首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In situ high-pressure/low-temperature synchrotron x-ray diffraction and optical Raman spectroscopy were used to examine the structural properties, equation of state, and vibrational dynamics of ice VIII. The x-ray measurements show that the pressure-volume relations remain smooth up to 23 GPa at 80 K. Although there is no evidence for structural changes to at least 14 GPa, the unit-cell axial ratio ca undergoes changes at 10-14 GPa. Raman measurements carried out at 80 K show that the nu(Tz)A(1g)+nuT(x,y)E(g) lattice modes for the Raman spectra of ice VIII in the lower-frequency regions (50-800 cm(-1)) disappear at around 10 GPa, and then a new peak of approximately 150 cm(-1) appears at 14 GPa. The combined data provide evidence for a transition beginning near 10 GPa. The results are consistent with recent synchrotron far-IR measurements and theoretical calculations. The decompressed phase recovered at ambient pressure transforms to low-density amorphous ice when heated to approximately 125 K.  相似文献   

2.
The sound velocity in polycrystalline ice was measured as a function of pressure at room temperature to 100 GPa, through the phase field of ice VII and crossing the ice X transition, by Brillouin scattering in order to examine the elasticity, compression mechanism, and structural transitions in this pressure range. In particular, we focused on previously proposed phase transitions below 60 GPa. Throughout this pressure range, we find no evidence for anomalous changes in compressibility, and the sound velocities and elastic moduli do not exhibit measurable discontinuous shifts with pressure. Subtle changes in the pressure dependence of the bulk modulus at intermediate pressures can be attributed to high shear stresses at these compressions. The C(11) and C(12) moduli are consistent with previously reported results to 40 GPa and increase monotonically at higher pressures.  相似文献   

3.
A high-pressure Raman spectroscopic study of phase transitions in thiourea is reported. The changes in the Raman spectra with increasing and decreasing pressure have been followed to a maximum pressure of approximately 11 GPa. We observe several changes in the spectra including splitting of modes, appearance of new modes, and sudden change in the slope of the frequency-pressure curve at several pressures. On the basis of this study, we propose the existence of three more transitions in this system to phases VII, VIII, and IX at approximately 1, 3, and 6.1 GPa, respectively, in addition to the V-VI phase transition at 0.35 GPa reported earlier. All the transitions have been found to be completely reversible. We interpret these changes in terms of symmetry-lowering phase transitions.  相似文献   

4.
When an emulsified 4.8 mol % LiCl-H2O solution was cooled under a pressure of 0.35 or 0.45 GPa and decompressed to 0.1 GPa at 142 K, slightly above its glass transition temperature (approximately 140 K at 0.1 GPa), its volume increased suddenly. This was regarded as an appearance of the low-density amorphous ice in the liquid solution as suggested by x-ray and Raman measurements, and this appearance corresponded to the high-to-low-density polyamorphic transition of pure H2O. Hysteresis was considered to accompany this volumetric change. The hysteresis of the liquid transition proves its first-order nature and, as for the solution, this suggests that the transition is a polyamorphic phase separation.  相似文献   

5.
The refractive index of H2O ice has been measured to 120 GPa at room temperature using reflectivity methods. The refractive index increases significantly with pressure on initial compression and exhibits small changes with pressure at previously identified phase transitions. Pressure dependencies of the molecular polarizability show changing slopes in different pressure regions. A general molar refractivity analysis of this change in slope reveals features at 60 GPa due to the onset of the ice VII-X transition. Band gap closure in H2O ice is constrained by the dispersion data using a single oscillator dielectric model. Sample thickness measurements obtained from interference patterns yield pressure-volume relations in excellent agreement with those measured by x-ray diffraction.  相似文献   

6.
Raman scattering and x-ray diffraction studies of CaSnO(3) perovskite were performed under high-pressure conditions. This high-pressure study was motivated by a recent theoretical study predicting a phase transition in CaSnO(3) from GdFeO(3)-type perovskite to CaIrO(3)-type structure occurred at 12 GPa. Despite no obvious structure change up to a pressure of 26 GPa based on the x-ray diffraction data, high pressure Raman measurements revealed that some Raman modes disappeared upon compression; either merging into neighboring bands or vanishing. The signals for these Raman peaks were recovered during decompression. The measured pressure derivative of Raman shift (?ν∕?P) of CaSnO(3) ranged from ~1.29 to ~4.35, up to 20 GPa. Due to the lack of lattice dynamic study for CaSnO(3) perovskite, the mode symmetry for CaSnO(3) was tentatively assigned based on the empirical relation among Ca-bearing perovskites. The pressure derivative of the Raman shifts was found to be related to their mode vibrations: modes related to Ca and O shifts had a strong pressure dependence compared with those associated with oxygen octahedral rotation.  相似文献   

7.
测定了在高压条件下两种金属(钙和锌)的8 羟基喹啉络合物的晶体粉末样品的发光行为和原位X光衍射光谱.结果表明,压力对其发光性质产生极大的影响.随着压力的增加,8 羟基喹啉钙的发光强度在3 GPa以内时大大增加,随后发光强度快速下降,到7 GPa左右时几乎为零.而8 羟基喹啉锌的发光强度随压力的增加而逐渐降低,到7 GPa左右时约为常压的10%.高压下的原位X光衍射结果表明,8 羟基喹啉钙的晶体在3~4 GPa开始 发生非晶化相变,在7 GPa时该非晶化相变完成,样品的X光衍射完全消失.而8 羟基喹啉锌在压力的作用下(至16 GPa)没有发生明显的相变.  相似文献   

8.
High pressure x-ray diffraction measurements on liquid carbon disulfide up to 1.2 GPa are performed by using an energy dispersion method. The results are compared with a molecular dynamics calculation with usual Lennard-Jones potential. They give very good agreement for all pressures measured. It becomes clear that the liquid structure changes like hard core liquid up to the pressure just below crystallizing point. The relation between structural change and optical response at high pressure is discussed.  相似文献   

9.
Single-crystal and polycrystalline urea samples were compressed to 12 GPa in a diamond-anvil cell. Raman-scattering measurements indicate a sequence of four structural phases occurring over this pressure range at room temperature. The transitions to the high-pressure phases take place at pressures near 0.5 GPa (phase I --> II), 5.0 GPa (II --> III), and 8.0 GPa (III --> IV). Lattice parameters in phase I (tetragonal, with 2 molecules per unit cell, space group P42(1)m (D3(2d))) and phase II (orthorhombic, 4 molecules per unit cell, space group P2(1)2(1)2(1) (D2(4))) were determined using angle-dispersive X-ray diffraction experiments. For phases III and IV, the combined Raman and diffraction data indicate that the unit cells are likely orthorhombic with four molecules per unit cell. Spatially resolved Raman measurements on single-crystal samples in phases III and IV reveal the coexistence of two domains with distinct spectral features. Physical origins of the spatial domains in phases III and IV are examined and discussed.  相似文献   

10.
The high pressure induced phase transition in rhenium diselenides (ReSe(2)) and gold-doped rhenium diselenides (Au-ReSe(2)) at ambient temperature have been investigated using angular-dispersive x-ray diffraction (ADXRD) under high pressure up to around 10.50 and 9.98 GPa, respectively. In situ ADXRD measurements found that the phase transition pressures of ReSe(2) and Au-ReSe(2) began at 9.98 and 8.52 GPa, respectively. Compressibilities analysis shows the relationship of along c-axis > along a-axis > along b-axis. The linear compressibility of the pressure dependence of α, β, and γ of ReSe(2) shows that a phase transition can be related to a counterclockwise rotational trend of the selenium atoms around the chain of Re(4) atoms during the decrease of the c-axis distance by a combination of stresses due to the bending effect of α and stretching effect of β. The cause of the reduction of the phase transition pressure of Au-ReSe(2) is attributed mainly to a structural distortion as evidenced by the observation of a weak clockwise rotational trend of Se atoms around the chain of Re(4) atoms in the pressure range 3.99-4.99 GPa which subsequently reversed to counterclockwise rotation under higher pressure.  相似文献   

11.
Raman spectroscopy and synchrotron x-ray diffraction measurements of ammonia (NH(3)) in laser-heated diamond anvil cells, at pressures up to 60 GPa and temperatures up to 2500 K, reveal that the melting line exhibits a maximum near 37 GPa and intermolecular proton fluctuations substantially increase in the fluid with pressure. We find that NH(3) is chemically unstable at high pressures, partially dissociating into N(2) and H(2). Ab initio calculations performed in this work show that this process is thermodynamically driven. The chemical reactivity dramatically increases at high temperature (in the fluid phase at T > 1700 K) almost independent of pressure. Quenched from these high temperature conditions, NH(3) exhibits structural differences from known solid phases. We argue that chemical reactivity of NH(3) competes with the theoretically predicted dynamic dissociation and ionization.  相似文献   

12.
Optical microscopy, spectroscopic and x-ray diffraction studies at high-pressure are used to investigate intermolecular interactions in binary mixtures of germane (GeH(4)) + hydrogen (H(2)). The measurements reveal the formation of a new molecular compound, with the approximate stoichiometry GeH(4)(H(2))(2), when the constituents are compressed above 7.5 GPa. Raman and infrared spectroscopic measurements show multiple H(2) vibrons substantially softened from bulk solid hydrogen. With increasing pressure, the frequencies of several Raman and infrared H(2) vibrons decrease, indicating anomalous attractive interaction for closed-shell, nonpolar molecules. Synchrotron powder x-ray diffraction measurements show that the compound has a structure based on face-centered cubic (fcc) with GeH(4) molecules occupying fcc sites and H(2) molecules likely distributed between O(h) and T(d) sites. Above ca. 17 GPa, GeH(4) molecules in the compound become unstable with respect to decomposition products (Ge + H(2)), however, the compound can be preserved metastably to ca. 27 GPa for time-scales of the order of several hours.  相似文献   

13.
The bisdithiazolyl radical 1a is dimorphic, existing in two distinct molecular and crystal modifications. The α-phase crystallizes in the tetragonal space group P4?2(1)m and consists of π-stacked radicals, tightly clustered about 4? points and running parallel to c. The β-phase belongs to the monoclinic space group P2(1)/c and, at ambient temperature and pressure, is composed of π-stacked dimers in which the radicals are linked laterally by hypervalent four-center six-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility χ measurements confirm that α-1a behaves as a Curie-Weiss paramagnet; the low-temperature variations in χ can be modeled in terms of a 1D Heisenberg chain of weakly coupled AFM S = (1)/(2) centers. The dimeric phase β-1a is essentially diamagnetic up to 380 K. Above this temperature there is a sharp hysteretic (T↑= 380 K, T↓ = 375 K) increase in χ and χT. Powder X-ray diffraction analysis of β-1a at 393 K has established that the phase transition corresponds to a dimer-to-radical conversion in which the hypervalent S···S-S···S σ-bond is cleaved. Variable-temperature and -pressure conductivity measurements indicate that α-1a behaves as a Mott insulator, but the ambient-temperature conductivity σ(RT) increases from near 10(-7) S cm(-1) at 0.5 GPa to near 10(-4) S cm(-1) at 5 GPa. The value of σ(RT) for β-1a (near 10(-4) S cm(-1) at 0.5 GPa) initially decreases with pressure as the phase change takes place, but beyond 1.5 GPa this trend reverses, and σ(RT) increases in a manner which parallels the behavior of α-1a. These changes in conductivity of β-1a are interpreted in terms of a pressure-induced dimer-to-radical phase change. High-pressure, ambient-temperature powder diffraction analysis of β-1a confirms such a transition between 0.65 and 0.98 GPa and establishes that the structural change involves rupture of the dimer in a manner akin to that observed at high temperature and ambient pressure. The response of the S···S-S···S σ-bond in β-1a to heat and pressure is compared to that of related dimers possessing S···Se-Se···S σ-bonds.  相似文献   

14.
To gain insight into the high-pressure polymorphism of RDX, an energetic crystal, Raman spectroscopy results were obtained for hydrostatic (up to 15 GPa) and non-hydrostatic (up to 22 GPa) compressions. Several distinct changes in the spectra were found at 4.0 +/- 0.3 GPa, confirming the alpha-gamma phase transition previously observed in polycrystalline samples. Detailed analyses of pressure-induced changes in the internal and external (lattice) modes revealed several features above 4 GPa: (i) splitting of both the A' and A' ' internal modes, (ii) a significant increase in the pressure dependence of the Raman shift for NO2 modes, and (iii) no apparent change in the number of external modes. It is proposed that the alpha-gamma phase transition leads to a rearrangement between the RDX molecules, which in turn significantly changes the intermolecular interaction experienced by the N-O bonds. Symmetry correlation analyses indicate that the gamma-polymorph may assume one of the three orthorhombic structures: D2h, C2v, or D2. On the basis of the available X-ray data, the D2h factor group is favored over the other structures, and it is proposed that gamma-phase RDX has a space group isomorphous with a point group D2h with eight molecules occupying the C1 symmetry sites, similar to the alpha-phase. It is believed that the factor group splitting can account for the observed increase in the number of modes in the gamma-phase. Spatial mapping of Raman modes in a non-hydrostatically compressed crystal up to 22 GPa revealed a large difference in mode position indicating a pressure gradient across the crystal. No apparent irreversible changes in the Raman spectra were observed under non-hydrostatic compression.  相似文献   

15.
The high-pressure behaviour of cesium sulphide Cs(2)S has been studied up to 19 GPa at room temperature using angle-dispersive x-ray powder diffraction in a diamond-anvil cell. X-ray results show that the initial anticotunnite-type structure (S.G. Pnma) seems to undertake a continuous transformation to a distorted Ni(2)In-type structure (also with S.G. Pnma), starting below 1 GPa and being almost completed at 5 GPa. The profile of the x-ray diffraction patterns did not change noticeably from this pressure to 17 GPa. The observed structural changes in Cs(2)S are discussed in relation to the high-pressure behaviour of the rest of alkaline sulfides and their systematic trends are pointed out. Finally, we discuss the analogies between the structures of alkaline-metal chalcogenides and those of the cationic arrays of their corresponding oxides (sulfates, selenates, and tellurates) comparing the insertion of oxygen and the application of pressure.  相似文献   

16.
The structural and chemical properties of the bi-molecular, hydrogen-bonded, nitrogen-rich energetic material triaminoguanidinium 1-methyl-5-nitriminotetrazolate C(3)H(12)N(12)O(2) (TAG-MNT) have been investigated at room pressure and under high pressure isothermal compression using powder x-ray diffraction and Raman and infrared spectroscopy. A stiffening of the equation of state and concomitant structural relaxation between 6 and 14 GPa are found to correlate with Raman mode disappearances, frequency discontinuities, and changes in the pressure dependence of modes. These observations manifest the occurrence of a reversible martensitic structural transformation to a new crystalline phase. The onset and vanishing of Fermi resonance in the nitrimine group correlate with the stiffening of the equation of state and phase transition, suggesting a possible connection between these phenomena. Beyond 15 GPa, pressure induces irreversible chemical reactions, culminating in the formation of a polymeric phase by 60 GPa.  相似文献   

17.
Structural and electronic evolution of Cr2O3 on compression to 55 GPa   总被引:1,自引:0,他引:1  
Synchrotron single-crystal x-ray diffraction experiments have been performed on corundum-type Cr2O3 up to a pressure of 55 GPa in Ne and He pressure transmitting media. Diffraction experiments were complemented by measurements of optical absorption spectra with single crystal samples up to 60 GPa. Results of the diffraction data analysis rule out the earlier reported monoclinic distortion at 15–30 GPa, but indicate evidence of two discontinuous transitions of electronic or magnetic nature, most likely associated with a change in magnetic ordering and charge transfer. The compression mechanism established from single crystal refinements indicates much smaller distortion of the Cr3+ coordination environment than was previously assumed.  相似文献   

18.
The location of the liquidus in the low-pressure crystalline phase of SnI(4) was determined utilizing in situ x-ray diffraction measurements under pressures up to approximately 3.5 GPa. The liquidus is not well fitted to a monotonically increasing curve such as Simon's equation, but breaks near 1.5 GPa and then becomes almost flat. The results are compared to those from molecular dynamics simulations. Ways to improve the model potential adopted in the simulations are discussed.  相似文献   

19.
The phase changes in polycrystalline ammonium nitrate and its fully deuterated analogue have been studied by Raman scattering. The phase V and IV transition was found to be associated with the softening and intensity decrease of a NO3? librational mode. The Raman line-width data suggest that the VII to V phase transition involves a change in the degree of orientational order of the ions without incurring a change in lattice structure.  相似文献   

20.
An understanding of water's anomalies is closely linked to an understanding of the phase diagram of water's metastable noncrystalline states. Despite the considerable effort, such an understanding has remained elusive and many puzzles regarding phase transitions in supercooled liquid water and their possible amorphous proxies at low temperatures remain. Here, decompression of very high density amorphous ice (VHDA) from 1.1 to 0.02 GPa at 140 K is studied by means of dilatometry and powder x-ray diffraction of quench-recovered states. It is shown that the three amorphous states of ice are reversibly connected to each other, i.e., LDA<-->e-HDA<-->VHDA. However, while the downstroke VHDA-->e-HDA transition takes place in the pressure range of 0.06 GPaLDA transition takes place quasi-discontinuously at p approximately 0.06 GPa. That is, two amorphous-amorphous transitions of a distinct nature are observed for the first time in a one-component system-a first-order-like transition (e-HDA-->LDA) and a transition which is not first-order like but possibly of higher order (VHDA-->e-HDA). VHDA and e-HDA are established as the most stable and limiting states in the course of the transition. We interpret this as evidence disfavoring the hypothesis of multiple first-order liquid-liquid transitions (and the option of a third critical point), but favoring a single first-order liquid-liquid transition (and the option of a second critical point).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号