首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures, electronic, dielectric, and vibrational properties of NaH, Na(2)O and NaOH are systematically investigated by first-principles calculations and the quasiharmonic approximation. The phonon dispersion relations and the phonon density of states of the phases and their thermodynamic functions including the heat capacity, the vibrational enthalpy, and the vibrational entropy are calculated using a direct force-constant method. Based on these results, the dehydrogenation reaction, NaH+NaOH-->H(2)+Na(2)O, is predicted to take place at 528 K, which is in agreement with the experimental observed value.  相似文献   

2.
Complementary structural and vibrational spectroscopy study of bromanilic acid:2,3,5,6-tetramethylpyrazine (BrA:TMP) 1:1 cocrystal is reported. The crystallographic structure was determined by means of single-crystal X-ray diffraction and can be described as a stacked net of hydrogen-bonded TMPH+⋯BrA⋯BrA⋯TMPH+ moieties. The structural analysis was supported by 13CP/MAS NMR study. The complementary vibrational analysis was performed by combining optical (infrared, Raman, terahertz) and inelastic neutron scattering spectroscopy with the state-of-the-art solid–state density functional theory (DFT) computations, which have proven to be superior to the hybrid cluster modeling approach. An excellent agreement between theoretical and experimental data was observed over the entire spectral range, allowing for deep understanding of the vibrational properties. While the primary hydrogen-bonding interactions are limited to the above quoted structural units, the system revealed very little dispersion of the phonon branches, manifested mainly in the intermolecular vibrations range. Moreover, the studied phase does not exhibit any mechanical instability, which could suggest a displacive structural transformation tendency.  相似文献   

3.
Numerical studies of vibrational energy transport and associated (non)linear infrared and Raman response in polyatomic materials require knowledge of the multidimensional vibrational potential-energy surface and the ability to perform normal-mode analysis on that potential. The presence of translational symmetry, as in crystals, leads to the observed dispersion of the unit cell normal modes and has to be accounted for in calculations of energy transfer rates and other spectroscopic quantities. Here we report on the implementation of a computational approach that combines the generalized supercell method and density functional theory electronic structure calculations to investigate the vibrational structure in translationally symmetric materials containing relatively large numbers of atoms in the unit cell (58 atoms in the present study). The method is applied to calculate the phonon and vibron dispersion relations and the vibrational density of states in pentaerythritol tetranitrate (PETN) molecular crystal which is an important energetic material. The results set the stage for future investigations of vibrational energy transport and associated nonlinear spectroscopic signatures in this class of materials.  相似文献   

4.
《Chemical physics》1987,113(1):53-64
Large-scale ab initio calculations have been performed on linear and cyclic oligomers of hydrogen cyanide molecules applying basis sets ranging from double-zeta to near-Hartree-Fock quality. Equilibrium geometries of linear (HCN)n clusters with n = 1 to 5 and of cyclic clusters with n = 3, 4 are reported. For most of the complexes complete vibrational analysis has been carried out. In agreement with recent experimental data the linear HCN trimer was found to be more stable than the cyclic trimer. In case of the tetramer linear and cyclic structures are of comparable stability. The structural changes taking place upon polymerization of linear HCN clusters and the convergence of various stage properties to those of the infinite polymer (HCN) are discussed in detail. The evolution from vibrational spectra of small oligomers to phonon dispersion curves of the infinite polymer is illustrated too.  相似文献   

5.
A quantum-mechanical ab initio method, with inclusion of spin–orbit coupling, has been suggested for the calculation of the electronic structure of carbon chains (carbynes) and nanotubes. Consideration of spin–orbit coupling leads to the formation of spin–orbit gaps with a width of 2–3 meV in carbynes and up to 1 meV in nanotubes, as well as to spin polarization in chiral nanotubes.  相似文献   

6.
Based on the density functional theory, we obtain the optimum geometry of carbon chain inside a carbon nanotube. The phonon spectrum and specific heat of such a chain and nanotube hybrid system are calculated in terms of lattice dynamics theory. Some new phonon branches that have been obtained come from the coupling vibrations of the nanotube and the chain. The bending and stretching modes of the chain appear at about 520 cm(-1)and 1935 cm(-1) at Gamma point, respectively. It is found that the softening of G modes results mainly from the chain induced variations in the bond length on nanotube, independent of van der Waals interaction, while the stiffening of radial breathing mode is developed by the competition between the two factors. In the low-frequency region, the vibrational density of states are very different from that of the bare nanotube. Its specific heat implies the underlying quantized phonon structures and much large thermal conductivity in the hybrid system. In addition, the chain-length dependent vibration modes are calculated, from which it is expected that a finite chain of about 14 carbon atoms in the nanotube may produce the experimental Raman peak at about 1850 cm(-1).  相似文献   

7.
The phonon spectra and electron-phonon interaction properties of hexagonal superconductor PdTe are studied systematically for the first time by density functional perturbation theory (DFPT). We present phonon dispersion with non-negative frequency in the whole Brillouin zone and reveal its three-dimensional character and strong vibrational coupling from both electronic and lattice dynamic viewpoint. First-principles calculation of logarithmically averaged frequency, Debye temperature, electron-phonon coupling constant and transition temperature Tc agree well with experimental values. It is definitely believed superconductivity of PdTe originates from isotropical nonlocal electron-phonon interaction. Moreover, Unlike FeTe, the transition temperature of PdTe decreases with increasing of pressure.  相似文献   

8.
As model compounds for nanosize carbon clusters, the phonon dispersion curves of polyacene are constructed based on density functional theory calculations for [n]oligoacenes (n=2-5, 10, and 15). Complete vibrational assignments are given for the observed Fourier-transform infrared and Raman spectra of [n]oligoacenes (n=2-5). Raman intensity distributions by the 1064-nm excitation are well reproduced by the polarizability-approximation calculations for naphthalene and anthracene, whereas several bands of naphthacene and pentacene at 1700-1100 cm(-1) are calculated to be enhanced by the resonance Raman effect. It is found from vibronic calculations that the coupled a(g) modes between the Kekulé deformation and joint CC stretching give rise to the Raman enhancements of the Franck-Condon type, and that the b(3g) mode corresponding to the graphite G mode is enhanced by vibronic coupling between the (1)L(a)((1)B(1u)) and (1)B(b)((1)B(2u)) states. The phonon dispersion curves of polyacene provide a uniform foundation for understanding molecular vibrations of the oligoacenes in terms of the phase difference. The mode correlated with the defect-sensitive D mode of the bulk carbon networks is also found for the present one-dimensional system.  相似文献   

9.
聚丙烯酸酯的玻璃化温度的定量结构性质相关研究   总被引:2,自引:0,他引:2  
提出了高分子的侧基顺拉模型 ,认为侧基的空间效应主要来源于侧基的轴向横截面积 .与侧基的轴向横截面积密切相关的是侧基的碳链分支数 .直接采用侧基碳链分支数作为侧基的空间效应参数 ,对 13种聚丙烯酸酯和 9种聚甲基丙烯酸酯的玻璃化温度进行了定量结构 性质相关研究 ,得到了良好的三参数模型 ,对聚丙烯酸酯和聚甲基丙烯酸酯的玻璃化温度分别进行回归分析 ,相关系数R2 =0 989(s =3 8K)和R2 =0 993 (s =4 8K) .该模型对 2 2种聚丙烯酸酯和聚甲基丙烯酸酯的合并计算的结果是R2 =0 980 (s =8 3K) .建立的模型参数计算简便 ,模型的稳定性和适应性较好 ,所有模型的标准误差均小于或接近实验误差 .  相似文献   

10.
We analyze the infrared and Raman spectra (both experimentally and with the aid of quantum chemical calculations) of a series of polyenals which provide us with the fortunate case of a set of polyene chains with one of the end groups consisting of a C=O group which not only does take part in the conjugation but also pulls electrons from the chain making the whole system highly polar, thus affecting the vibrational transition moments. In the following we show, for the first time, that it is possible to derive experimental phonon dispersion curves and these prove to be different for each chain length. We support our experimental findings with Density Functional Theory quantum chemical calculations which reproduce with sufficient accuracy the IR and Raman spectral pattern and at the same time help in disentangling the assignment of the fine structure observed in the experimental spectra.  相似文献   

11.
Traditionally, the calculation of the vibrational spectra of molecules involves at one point or another a numerical differentiation procedure. Such a method has some serious drawbacks both in efficiency and in accuracy. In this paper, an alternative method based on linear response theory is presented. The second derivative of the ground-state energy is expressed in terms of the electron density response matrix by means of perturbation theory. The unperturbed wave functions are obtained from the Hartree–Fock equation. First-order perturbation theory applied to this equation leads to the Hartree–Fock linear response. As an illustration of this method the vibrational frequency of a H2 molecule is calculated. The result is 1.348 × 1014 Hz as compared to the experimental value of 1.319 × 1014 Hz. This method is also applicable in the calculation of the phonon dispersion curves of solids.  相似文献   

12.
We report experimental results on the lattice dynamics of zincblende and wurtzite boron nitride obtained by inelastic X-ray scattering (IXS) on polycrystalline samples. The generalized vibrational density of states and the orientation averaged longitudinal acoustic phonon dispersion are determined, and the longitudinal and shear sound speeds as well as the Debye temperature are derived. Our results are compared to ab initio lattice dynamics calculations and available elastic and thermodynamic data.  相似文献   

13.
A 3D single-wall carbon nanotube can be viewed as a 2D graphite sheet rolled into a 3D cylinder. In the study of dispersion relations of carbon nanotubes, the consistent force parameters for 2D graphite sheets have to be modified to include the curvature effect. The present paper reports a series of calculations of phonon dispersion relations for single-wall carbon armchair, zigzag nanotube in which the curvature effect has been properly treated. The symmetry of crystal vibration mode at the centre of Brillouin zone is analyzed based on our numeric results and the structure symmetry of the nanotubes.  相似文献   

14.
Isotactic polypropylene‐vapor grown carbon nanofiber composites containing various fractions of carbon nanofibers, ranging from 0 to 20 wt %, have been prepared. Raman spectroscopy was used to analyze the effect of the dispersion of carbon nanofibers within polypropylene and the interactions between carbon nanofibers and macromolecular chains. The as‐recorded Raman spectra have been successfully fitted by a linear convolution of Lorentzian lines. Changes of the Raman lines parameters (position, intensity, width, and area) of polypropylene and carbon nanofibers were analyzed in detail. The Raman spectra of the polymeric matrix—at low concentrations of nanofibers—show important modifications that indicate strong interactions between carbon nanofibers and the polymeric matrix reflecting by vibrational dephasing of macromolecular chains. The Raman spectrum of carbon nanofibers is sensitive to the loading with carbon nanofibers, showing changes of the resonance frequencies, amplitudes, and width for both D‐ and G‐bands. Raman data reveals the increase of the disorder, as the concentration of carbon nanofibers is increased. The presence of the typical ESR line assigned to conducting electrons delocalized over carbon nanofibers is confirmed and the presence of a spurious magnetic line due to catalyst's residues is reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1644–1652, 2009  相似文献   

15.
We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model for studying the dynamical properties using three polyacene chains is proposed with the aim to present the vibrational properties of this structure. It employs the formalism of solid states in two dimensions which admit phonons. A simulation process of the two-dimensional lattice structure shows that elastic waves may explain the existence of vibrational modes in the frequency range 100-400 cm-1. The presence of acoustic and optical like phonons is discussed in terms of the elastic force constants. A hyperfine resonance structure is obtained. It allows the analysis of the dynamical evolution in thin films of polyacene. It is found that the behavior of the phonon density of states exhibits resonance between modes in the structure.  相似文献   

16.
We present a methodology for extracting phonon data from ab initio Born-Oppenheimer molecular dynamics calculations of molecular crystals. Conventional ab initio phonon methods based on perturbations are difficult to apply to lattice modes because the perturbation energy is dominated by intramolecular modes. We use constrained molecular dynamics to eliminate the effect of bond bends and stretches and then show how trajectories can be used to isolate and define in particular, the eigenvalues and eigenvectors of modes irrespective of their symmetry or wave vector. This is done by k-point and frequency filtering and projection onto plane wave states. The method is applied to crystalline ammonia: the constrained molecular dynamics allows a significant speed-up without affecting structural or vibrational modes. All Gamma point lattice modes are isolated: the frequencies are in agreement with previous studies; however, the mode assignments are different.  相似文献   

17.
We have preformed first-principle calculations for the structural, vibrational and thermodynamic properties of the IIB–VIA Zn-based semiconductor compounds ZnX (X = O, S, Se, Te). The phonon dispersion curves along several high-symmetry lines at the Brillouin zone together with the corresponding phonon density of states are calculated using density-functional perturbation theory. The calculated phonon frequencies at the Γ, X, and L points of the Brillouin zone show good agreement with the experimental values and other calculations. The thermodynamics properties including the phonon contribution to the Helmholtz free energy ΔF, the phonon contribution to the internal energy ΔE, the entropy S, and the constant-volume specific heat CV are determined within the harmonic approximation based on the calculated phonon dispersion relations. If 298 K is taken as a reference temperature, the difference values of H ? H298 have been also calculated and compared with the available experimental data.  相似文献   

18.
Nedelcu S  Slater GW 《Electrophoresis》2005,26(21):4003-4015
In the framework of the classical blob theory of end-labeled free-solution electrophoresis of ssDNA, and based on recent experimental data with linear and branched polymeric labels (or drag-tags), the present study puts forward design principles for the optimal type of branching that would give, for a given total number of monomers, the highest effective frictional drag for ssDNA sequencing purposes. The hydrodynamic radii of the linear and branched labels are calculated using standard models like the freely jointed chain model and the Kratky-Porod worm-like chain model. Based on comparisons of the theory with the experimental data, we propose that the design of new branched labels should use either side chains whose length is comparable to the distance between the branching points or two long branches located near the ends of the molecule's backbone.  相似文献   

19.
A mathematical model was developed to describe the populations of polymer chains containing different numbers of long‐chain branches (LCBs) made with a combination of two single‐site catalysts. One of the catalysts produces only linear chains (linear‐catalyst) and the other produces linear and long‐branched chains (LCB‐catalyst). The model shows that when the selectivity for macromer formation of the linear‐catalyst is the same as that of the LCB‐catalyst, it is not possible to maximize the number of LCB per chain, even though the number of LCB per 1 000 carbon atoms (C) can be maximized. On the other hand, if the selectivity for macromer formation of the linear‐catalyst is higher than that of the LCB‐catalyst, both LCB/1 000 C and LCB/chain pass through maxima when varying the fraction of the linear‐catalyst in the reactor. More importantly, polymer populations with different numbers of LCB per chain will reach their maximum values at different ratios of linear‐catalyst to LCB‐catalyst, thus permitting the maximization of individual polymer populations in the mixture.  相似文献   

20.
The angular distribution function P(θ) for intensity of light scattered by a dilute solution of comblike branched molecules has been determined for three situations of some interest for evaluation of experimental data: (1) the molecules are identical with branches of equal length attached equidistantly along linear backbone chains; (2) the molecules are homogeneous in mass, with the same number of branches on each molecule, but the branches are distributed at random along the chain; (3) branches and main chains are still uniform, but the molecules are heterogeneous in mass with the number of branches per molecule distributed according to the binomial distribution and the branches in any molecule spaced randomly along the backbone. Examination of numerical results shows that the scattering functions for models (1) and (2) are not very different. The function for case (3) is somewhat different from the others when the mean number of branches per molecule is small but they contain a large fraction of the mass of the molecule. Over a limited range of the pertinent variables (corresponding roughly to observations on typical vinyl polymers of molecular weights up to 106) all three functions agree quite well with P(θ) for homogeneous linear chains with the same mean-square radius of gyration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号