首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.  相似文献   

2.
Pairing of guanidinium moieties in water is explored by molecular dynamics simulations of short arginine-rich peptides and ab initio calculations of a pair of guanidinium ions in water clusters of increasing size. Molecular dynamics simulations show that, in an aqueous environment, the diarginine guanidinium like-charged ion pairing is sterically hindered, whereas in the Arg-Ala-Arg tripeptide, this pairing is significant. This result is supported by the survey of protein structure databases, where it is found that stacked arginine pairs in dipeptide fragments exist solely as being imposed by the protein structure. In contrast, when two arginines are separated by a single amino acid, their guanidinium groups can freely approach each other and they frequently form stacked pairs. Molecular dynamics simulations results are also supported by ab initio calculations, which show stabilization of stacked guanidinium pairs in sufficiently large water clusters.  相似文献   

3.
The reactivity of 5,6-dihydroxyindole and its major dimers has been studied with the use of a recently proposed general-purpose reactive indicator (Anderson et al. J. Chem. Theory Comput. 2007, 3, 358-374) from ab initio density-functional theory calculations. Theoretical prediction has reasonably explained previously isolated oligomers up to tetramers. The oxidative polymerization is governed by the electron-transfer-controlled reaction. The electrostatic interaction plays a regioselective role in the reactant complex and/or intermediates. A monomer-dimer coupling is able to form trimers, while a part of it is prevented by the exchange repulsion, i.e., steric hindrance. Therefore, a dimer-dimer coupling is also able to form tetramers.  相似文献   

4.
The potential energy surfaces of isomerization, dissociation, and elimination reactions for CH3CH2COCl in the S0 and S1 states have been mapped with the different ab initio calculations. Mechanistic photodissociation of CH3CH2COCl at 266 nm has been characterized through the computed potential energy surfaces, the optimized surface crossing structure, intrinsic reaction coordinate, and ab initio molecular dynamics calculations. Photoexcitation at 266 nm leads to the CH3CH2COCl molecules in the S1 state. From this state, the C-Cl bond cleavage proceeds in a time scale of picosecond in the gas phase. The barrier to the C-Cl bond cleavage on the S1 surface is significantly increased by effects of the matrix and the internal conversion to the ground state prevails in the condensed phase. The HCl eliminations as a result of internal conversion to the ground state become the dominant channel upon photodissociation of CH3CH2COCl in the argon matrix at 10 K.  相似文献   

5.
The molecular structure and benzene ring distortions of ethynylbenzene have been investigated by gas-phase electron diffraction and ab initio MO calculations at the HF/6-31G* and 6-3G** levels. Least-squares refinement of a model withC 2v, symmetry, with constraints from the MO calculations, yielded the following important bond distances and angles:r g(C i -C o )=1.407±0.003 Å,r g(C o -C m )=1.397±0.003 Å,r g(C m -C p )=1.400±0.003 Å,r g(Cr i -CCH)=1.436 ±0.004 Å,r g(C=C)=1.205±0.005 Å, C o -C i -C o =119.8±0.4°. The deformation of the benzene ring of ethynylbenzene given by the MO calculations, including o-Ci-Co=119.4°, is insensitive to the basis set used and agrees with that obtained by low-temperature X-ray crystallography for the phenylethynyl fragment, C6H5-CC-, in two different crystal environments. The partial substitution structure of ethynylbenzene from microwave spectroscopy is shown to be inaccurate in the ipso region of the benzene ring.  相似文献   

6.
Large computations are performed on the C(4) (+) cation in order to characterize its stable isomers and its lowest electronic excited states using configuration interaction methods and large basis sets. Several stable isomers are found including a linear C(4) (+)(l-C(4) (+)), a rhombic C(4) (+)(r-C(4) (+)) (or cyclic), and a branched (d-C(4) (+)) structure. Our calculations show a high density of electronic states for all of these isomers favoring their interactions. By combining the present ab initio data and those on neutral C(4), the l-C(4)(X)+hnu-->l-C(4) (+)(X(+))+e(-), d-C(4)(X)+hnu-->d-C(4) (+)(X(+))+e(-), and r-C(4)(X)+hnu-->r-C(4) (+)(X(+))+e(-) vertical photoionization transition energies are computed at 10.87, 10.92, and 10.77 eV, respectively. Photoionizing a C(4) molecular beam results on an onset at 10.4-10.5 eV and then to a linear increase of the signal due to the opening of several ionization channels involving most of the C(4) and C(4) (+) isomers and electronic states.  相似文献   

7.
Oligoacenes C(4n+2)H(2n+4) (n=2,...,6) are studied using a variety of ab initio methods. Density functional theory (DFT) optimized geometries were in good agreement with experiment. Vertical and adiabatic ionization potentials and electron affinities were computed with DFT and it was found that standard exchange-correlation (xc) functionals underestimate ionization potentials in oligoacenes. Possible reasons for this underestimation are discussed. Low lying electronic excitations were computed using time-dependent density functional theory, configuration interaction singles, and configuration interaction singles with approximate treatment of doubles. In agreement with earlier work, time-dependent DFT in conjunction with standard xc-energy functionals substantially underestimates the lowest (p) singlet-singlet electronic transition.  相似文献   

8.
He(I) and He(II) photoelectron spectra are reported for the cycl[3,3,3]azine (1), cycl[3,2,2]azine (2), indolizine (6) and imidazo[1,2-a] pyridine (7), as well as He(I) spectra for related compounds (3–5). Ab initio molecular orbital calculations have been used to assign the spectra of 1, 2, 3, 6 and 7, and to give information about the nature of the π-electron energy levels. The first IP for 1 is singularly low (5.86 eV), and this has been interpreted in terms of occupancy of the 1a1'' orbital which is normally vacant in related compounds. In the cyclazines, the nitrogen lone pair seems to be split into two π-levels.  相似文献   

9.
The molecular and crystal structure of 3-(trifluoromethyl)phenanthrene has been determined by X-ray diffraction. The structure of the isolated molecule has been calculated using electronic structure methods at the HF/3-21G, HF/6-31G, MP2/6-31G and B3LYP/6-31G levels. The potential energy surfaces for the rotation of the CF3 group in both the isolated molecule and cluster models for the crystal were computed using electronic structure methods. The barrier height for CF3 rotation in the isolated molecule was calculated to be 0.40 kcal mol(-1) at B3LYP/6-311+G//B3LYP/6-311+G. The B3LYP/6-31G calculated CF3 rotational barrier in a 13-molecule cluster based on the X-ray data was found to be 2.6 kcal mol(-1). The latter is in excellent agreement with experimental results from the NMR relaxation experiments reported in the companion paper (Beckmann, P. A.; Rosenberg, J.; Nordstrom, K.; Mallory, C. W.; Mallory, F. B. J. Phys. Chem. A 2006, 110, 3947). The computational results on the models for the solid state suggest that the intermolecular interaction between nearest neighbor pairs of CF3 groups in the crystal accounts for roughly 75% of the barrier to rotation in the solid state. This pair is found to undergo cooperative reorientation. We attribute the CF3 reorientational disorder in the crystal as observed by X-ray diffraction to the presence of a pair of minima on the potential energy surface and the effects of librational motion.  相似文献   

10.
The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.  相似文献   

11.
Steric and electronic structure of 2-methoxy- and 2-ethoxyphenyltrichlorostannanes, as well as of 2-methoxyphenyltrichlorostannanes substituted in the ring, was studied using the RHF and B3LYP levels with the 3?C21G* basis set. The results of calculations were compared with experimental 35Cl NQR data. In all studied molecules the Sn atom is pentacoordinated. The structure of the coordination polyhedron is a highly distorted trigonal bipyramid. Replacing methyl group in the alkoxy substituent involved in the Sn??O coordinating interaction by a more electron-donor ethyl group increases the strength of the Sn??O coordination bond. The same occurs also at the introduction of an electron-releasing substituent in the aromatic ring.  相似文献   

12.
13.
In the present study, the five lowest electronic states that control the UV photodissociation of formanilide and benzamide have been characterized using the complete active space self-consistent field theory. The mechanisms for the initial relaxation and subsequent dissociation processes have been determined on the basis of the calculated potential energy surfaces and their intersections. It was found that the S(1)/T(1)/T(2) three-surface intersection plays an important role in the photodissociation processes of benzamide. However, the dissociation behavior of formanilide and benzamide was found to be quite different from that for aliphatic amides. The present study provides several insights into the photodissociation dynamics of formanilide and benzamide.  相似文献   

14.
The effect of hydration on the electronic structure of H(2)O(2) is investigated by liquid-jet photoelectron spectroscopy measurements and ab initio calculations. Experimental valence electron binding energies of the H(2)O(2) orbitals in water are, on average, 1.9 eV red-shifted with respect to the gas-phase molecule. A smaller width of the first peak was observed in the photoelectron spectrum from the solution. Our experiment is complemented by simulated photoelectron spectra, calculated at the ab initio level of theory (with EOM-IP-CCSD and DFT methods), and using path-integral sampling of the ground-state density. The observed shift in ionization energy upon solvation is attributed to a combination of nonspecific electrostatic effects (long-range polarization) and of the specific interactions between H(2)O(2) and H(2)O molecules in the first solvation shell. Changes in peak widths are found to result from merging of the two lowest ionized states of H(2)O(2) in water due to conformational changes upon solvation. Hydration effects on H(2)O(2) are stronger than on the H(2)O molecule. In addition to valence spectra, we report oxygen 1s core-level photoelectron spectra from H(2)O(2)(aq), and observed energies and spectral intensities are discussed qualitatively.  相似文献   

15.
Atoms at liquid metal surfaces are known to form layers parallel to the surface. We analyze the two-dimensional arrangement of atoms within such layers at the surface of liquid sodium using ab initio molecular dynamics (MD) simulations based on a full version of density functional theory. Nearest neighbor distributions at the surface indicate mostly fivefold coordination, though there are noticeable fractions of fourfold and sixfold coordinated atoms. Bond angle distributions suggest a movement toward the angles corresponding to a sixfold coordinated hexagonal arrangement of the atoms as the temperature is decreased towards the solidification point. We rationalize these results with a distorted hexagonal model at the surface, showing a mixture of regions of five- and sixfold coordination. The liquid surface results are compared with classical MD simulations of the liquid surface, with similar effects appearing, and with ab initio MD simulations for a model solid-liquid interface, where a pronounced shift towards hexagonal ordering is observed as the temperature is lowered.  相似文献   

16.
Gas sensing study of C2H4Li complex toward oxides viz. CO, CO2, NO, NO2, SO, and SO2 gas molecules has been carried out using ab initio method. Different possible configurations of gas molecule adsorption on C2H4Li complex are considered. The structural parameters of most stable configuration of gas molecule adsorbed complexes are thoroughly analysed. Electronic properties are studied using total density of states (DOS) plot. Charge transferred between the gas molecule and the substrate is studied using NBO charge analysis. Gas sensing of all the six gas molecules is possible at ambient conditions. Atom centred density matrix propagation (ADMP) molecular dynamics simulations confirmed that all the gas molecules remain adsorbed on C2H4Li complex at room temperature during the simulation. This study suggests that the C2H4Li complex acts as a novel gas sensing material for CO, CO2, NO, NO2, SO, and SO2 gas molecules at ambient conditions, below room temperature as well as at high pressure.  相似文献   

17.
Features of the structure of thiophene and 2-chlorothiophene molecules have been analyzed from the results of ab initio calculations using the RHF/6-31G* method.Institute for Technical Chemistry, Ural Department, Russian Academy of Sciences, Perm 614000, Russia; email: cheminst@mail.psu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 40–43, January, 1999.  相似文献   

18.
The potential energy surfaces of dissociation and elimination reactions for CH(3)COCl in the ground (S0) and first excited singlet (S1) states have been mapped with the different ab inito calculations. Mechanistic photodissociation of CH(3)COCl has been characterized through the intrinsic reaction coordinate and ab initio molecular dynamics calculations. The alpha-C-C bond cleavage along the S1 pathway leads to the fragments of COCl((2)A' ') and CH(3) ((2)A') in an excited electronic state and a high barrier exists on the pathway. This channel is inaccessible in energy upon photoexcitation of the CH(3)COCl molecules at 236 nm. The S1 alpha-C-Cl bond cleavage yields the Cl((2)P) and CH(3)CO(X(2)A') fragments in the ground state and there is very small or no barrier on the pathway. The S1 alpha-C-Cl bond cleavage proceeds in a time scale of picosecond in the gas phase, followed by CH(3)CO decomposition to CH(3) and CO. The barrier to the C-Cl bond cleavage on the S1 surface is significantly increased by effects of the argon matrix. The S1 alpha-C-Cl bond cleavage in the argon matrix becomes inaccessible in energy upon photoexcitation of CH(3)COCl at 266 nm. In this case, the excited CH(3)COCl(S1) molecules cannot undergo the C-Cl bond cleavage in a short period. The internal conversion from S1 to S0 becomes the dominant process for the CH(3)COCl(S1) molecules in the condensed phase. As a result, the direct HCl elimination in the ground state becomes the exclusive channel upon 266 nm photodissociation of CH(3)COCl in the argon matrix at 11 K.  相似文献   

19.
20.
The molecular structure of three different isomers of bicyclo[1.1.0]tetraarsane has been obtained by means of ab initio techniques including the use of non-empirical pseudo-potentials and analytical first derivatives of the total energy versus the nuclear coordinates. The results show unequivocally the existence of three different stable structures. The very small energy difference between the exoexo and endoexo is further evidence that these are in fact the two isomers found experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号