首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vowel identification was tested in quiet, noise, and reverberation with 20 normal-hearing subjects and 20 hearing-impaired subjects. Stimuli were 15 English vowels spoken in a /b-t/context by six male talkers. Each talker produced five tokens of each vowel. In quiet, all stimuli were identified by two judges as the intended targets. The stimuli were degraded by reverberation or speech-spectrum noise. Vowel identification scores depended upon talker, listening condition, and subject type. The relationship between identification errors and spectral details of the vowels is discussed.  相似文献   

2.
The effects of noise and reverberation on the identification of monophthongs and diphthongs were evaluated for ten subjects with moderate sensorineural hearing losses. Stimuli were 15 English vowels spoken in a /b-t/ context, in a carrier sentence. The original tape was recorded without reverberation, in a quiet condition. This test tape was degraded either by recording in a room with reverberation time of 1.2 s, or by adding a babble of 12 voices at a speech-to-noise ratio of 0 dB. Both types of degradation caused statistically significant reductions of mean identification scores as compared to the quiet condition. Although the mean identification scores for the noise and reverberant conditions were not significantly different, the patterns of errors for these two conditions were different. Errors for monophthongs in reverberation but not in noise seemed to be related to an overestimation of vowel duration, and there was a tendency to weight the formant frequencies differently in the reverberation and quiet conditions. Errors for monophthongs in noise seemed to be related to spectral proximity of formant frequencies for confused pairs. For the diphthongs in both noise and reverberation, there was a tendency to judge a diphthong as the beginning monophthong. This may have been due to temporal smearing in the reverberation condition, and to a higher masked threshold for changing compared to stationary formant frequencies in the noise condition.  相似文献   

3.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

4.
English consonant recognition in undegraded and degraded listening conditions was compared for listeners whose primary language was either Japanese or American English. There were ten subjects in each of the two groups, termed the non-native (Japanese) and the native (American) subjects, respectively. The Modified Rhyme Test was degraded either by a babble of voices (S/N = -3 dB) or by a room reverberation (reverberation time, T = 1.2 s). The Japanese subjects performed at a lower level than the American subjects in both noise and reverberation, although the performance difference in the undegraded, quiet condition was relatively small. There was no difference between the scores obtained in noise and in reverberation for either group. A limited-error analysis revealed some differences in type of errors for the groups of listeners. Implications of the results are discussed in terms of the effects of degraded listening conditions on non-native listeners' speech perception.  相似文献   

5.
For 140 male subjects (20 per decade between the ages 20 and 89) and 72 female subjects (20 per decade between 60 and 89, and 12 for the age interval 90-96), the monaural speech-reception threshold (SRT) for sentences was investigated in quiet and at four noise levels (22.2, 37.5, 52.5, and 67.5 dBA noise with long-term average speech spectra). The median SRT as well as the quartiles are given as a function of age. The data are described in terms of a model published earlier [J. Acoust. Soc. Am. 63, 533-549 (1978)]. According to this model every hearing loss for speech (SHL) is interpreted as the sum of a loss class A (attenuation), characterized by a reduction of the levels of both speech signal and noise, and a loss class D (distortion), comparable with a decrease in signal-to-noise ratio. Both SHLA+D (hearing loss in quiet) and SHLD (hearing loss at high noise levels) increase progressively above the age of 50 (reaching typical values of 30 and 6 dB, respectively, at age 85). The spread of SHLD as a function of SHLA+D for the individual ears is so large (sigma = 2.7 dB) that subjects with the same hearing loss for speech in quiet may differ considerably in their ability to understand speech in noise. The data confirm that the hearing handicap of many elderly subjects manifests itself primarily in a noisy environment. Acceptable noise levels in rooms used by the aged must be 5 to 10 dB lower than those for normal-hearing subjects.  相似文献   

6.
Effect of spectral envelope smearing on speech reception. I.   总被引:2,自引:0,他引:2  
The effect of reduced spectral contrast on the speech-reception threshold (SRT) for sentences in noise and on phoneme identification, was investigated with 16 normal-hearing subjects. Signal processing was performed by smoothing the envelope of the squared short-time fast Fourier transform (FFT) by convolving it with a Gaussian-shaped filter, and overlapping additions to reconstruct a continuous signal. Spectral energy in the frequency region from 100 to 8000 Hz was smeared over bandwidths of 1/8, 1/4, 1/3, 1/2, 1, 2, and 4 oct for the SRT experiment. Vowel and consonant identification was studied for smearing bandwidths of 1/8, 1/2, and 2 oct. Results showed the SRT in noise to increase as the spectral energy was smeared over bandwidths exceeding the ear's critical bandwidth. Vowel identification suffered more from this type of processing than consonant identification. Vowels were primarily confused with the back vowels /c,u/, and consonants were confused where place of articulation is concerned.  相似文献   

7.
In the present study, speech-recognition performance was measured in four hearing-impaired subjects and twelve normal hearers. The normal hearers were divided into four groups of three subjects each. Speech-recognition testing for the normal hearers was accomplished in a background of spectrally shaped noise in which the noise was shaped to produce masked thresholds identical to the quiet thresholds of one of the hearing-impaired subjects. The question addressed in this study is whether normal hearers with a hearing loss simulated through a shaped masking noise demonstrate speech-recognition difficulties similar to those of listeners with actual hearing impairment. Regarding overall percent-correct scores, the results indicated that two of the four hearing-impaired subjects performed better than their corresponding subgroup of noise-masked normal hearers, whereas the other two impaired listeners performed like the noise-masked normal listeners. A gross analysis of the types of errors made suggested that subjects with actual and simulated losses frequently made different types of errors.  相似文献   

8.
The influence of the precedence effect on word identification was investigated binaurally and monaurally with normally hearing and hearing-impaired subjects. The Modified Rhyme Test was processed through a PDP-12 computer to produce delay times of 0, 5, 10, 20, 40, 80, or 160 ms. The sounds were reproduced in a room by two loudspeakers positioned at +/-30 degrees azimuths in front of a subject at 50 dB SPL for normals and at the most comfortable level for impaireds. A babble of eight voices was added to reduce scores about 15% from the best values measured in quiet. Binaural and monaural word identification remained constant over a range of delays from 0 to 20 ms and declined for longer delays for both groups of subjects. The shapes of the word-identification curves were explained by self-masking (an overlap of consonants with their own repetitions) and masking (an overlap of consonants with preceding vowels or preceding and following words in sentence). Binaural responses for ten selected initial and final consonants showed various patterns of perception with delay. Some hearing impaireds showed more deterioration in word identification than others which might indicate that they experience more perceptual difficulties than normal listeners in places with reverberation or sound amplification.  相似文献   

9.
The present study measured the recognition of spectrally degraded and frequency-shifted vowels in both acoustic and electric hearing. Vowel stimuli were passed through 4, 8, or 16 bandpass filters and the temporal envelopes from each filter band were extracted by half-wave rectification and low-pass filtering. The temporal envelopes were used to modulate noise bands which were shifted in frequency relative to the corresponding analysis filters. This manipulation not only degraded the spectral information by discarding within-band spectral detail, but also shifted the tonotopic representation of spectral envelope information. Results from five normal-hearing subjects showed that vowel recognition was sensitive to both spectral resolution and frequency shifting. The effect of a frequency shift did not interact with spectral resolution, suggesting that spectral resolution and spectral shifting are orthogonal in terms of intelligibility. High vowel recognition scores were observed for as few as four bands. Regardless of the number of bands, no significant performance drop was observed for tonotopic shifts equivalent to 3 mm along the basilar membrane, that is, for frequency shifts of 40%-60%. Similar results were obtained from five cochlear implant listeners, when electrode locations were fixed and the spectral location of the analysis filters was shifted. Changes in recognition performance in electrical and acoustic hearing were similar in terms of the relative location of electrodes rather than the absolute location of electrodes, indicating that cochlear implant users may at least partly accommodate to the new patterns of speech sounds after long-time exposure to their normal speech processor.  相似文献   

10.
Multichannel cochlear implant users vary greatly in their word-recognition abilities. This study examined whether their word recognition was related to the use of either highly dynamic or relatively steady-state vowel cues contained in /bVb/ and /wVb/ syllables. Nine conditions were created containing different combinations of formant transition, steady-state, and duration cues. Because processor strategies differ, the ability to perceive static and dynamic information may depend on the type of cochlear implant used. Ten Nucleus and ten Ineraid subjects participated, along with 12 normal-hearing control subjects. Vowel identification did not differ between implanted groups, but both were significantly poorer at identifying vowels than the normal-hearing group. Vowel identification was best when at least two kinds of cues were available. Using only one type of cue, performance was better with excised vowels containing steady-state formants than in "vowelless" syllables, where the center vocalic portion was deleted and transitions were joined. In the latter syllable type, Nucleus subjects identified vowels significantly better when /b/ was the initial consonant; the other two groups were not affected by specific consonantal context. Cochlear implant subjects' word-recognition was positively correlated with the use of dynamic vowel cues, but not with steady-state cues.  相似文献   

11.
Native Italian speakers' perception and production of English vowels   总被引:2,自引:0,他引:2  
This study examined the production and perception of English vowels by highly experienced native Italian speakers of English. The subjects were selected on the basis of the age at which they arrived in Canada and began to learn English, and how much they continued to use Italian. Vowel production accuracy was assessed through an intelligibility test in which native English-speaking listeners attempted to identify vowels spoken by the native Italian subjects. Vowel perception was assessed using a categorial discrimination test. The later in life the native Italian subjects began to learn English, the less accurately they produced and perceived English vowels. Neither of two groups of early Italian/English bilinguals differed significantly from native speakers of English either for production or perception. This finding is consistent with the hypothesis of the speech learning model [Flege, in Speech Perception and Linguistic Experience: Theoretical and Methodological Issues (York, Timonium, MD, 1995)] that early bilinguals establish new categories for vowels found in the second language (L2). The significant correlation observed to exist between the measures of L2 vowel production and perception is consistent with another hypothesis of the speech learning model, viz., that the accuracy with which L2 vowels are produced is limited by how accurately they are perceived.  相似文献   

12.
Consonant recognition in quiet and in noise was investigated as a function of age for essentially normal hearing listeners 21-68 years old, using the nonsense syllable test (NST) [Resnick et al., J. Acoust. Soc. Am. Suppl. 1 58, S114 (1975)]. The subjects audited the materials in quiet and at S/N ratios of +10 and +5 dB at their most comfortable listening levels (MCLs). The MCLs approximated conversational speech levels and were not significantly different between the age groups. The effects of age group, S/N condition (quiet, S/N +10, S/N +5) and NST subsets, and the S/N condition X subset interaction were all significant. Interactions involving the age factor were nonsignificant. Confusion matrices were similar across age groups, including the directions of errors between the most frequently confused phonemes. Also, the older subjects experienced performance decrements on the same features that were least accurately recognized by the younger subjects. The findings suggest that essentially normal older persons listening in quiet and in noise experience decreased consonant recognition ability, but that the nature of their phoneme confusions is similar to that of younger individuals. Even though the older subjects met the same selection criteria as did younger ones, there was an expected shift upward in auditory thresholds with age within these limits. Sensitivity at 8000 Hz was correlated with NST scores in noise when controlling for age, but the correlation between performance in noise and age was nonsignificant when controlling for the 8000-Hz threshold. These associations seem to implicate the phenomena underlying the increased 8000-Hz thresholds in the speech recognition problems of the elderly, and appear to support the concept of peripheral auditory deterioration with aging even among those with essentially normal hearing.  相似文献   

13.
Two effects of reverberation on the identification of consonants were evaluated for ten normal-hearing subjects: (1) the overlap of energy of a preceding consonant on the following consonant, called "overlap-masking"; and (2) the internal temporal smearing of energy within each consonant, called "self-masking." The stimuli were eight consonants/p,t,k,f,m,n,l,w/. The consonants were spoken in /s-at/context (experiment 1) and generated by a speech synthesizer in /s-at/ and/-at/contexts (experiment 2). In both experiments, identification of consonants was tested in four conditions: (1) quiet, without degradations; (2) with a babble of voices; (3) with noise that was shaped like either natural or synthetic/s/ for the two experiments, respectively; and (4) with room reverberation. The results for the natural and synthetic syllables indicated that the effect of reverberation on identification of consonants following/s/ was not comparable to masking by either the /s/ -spectrum-shaped noise or the babble. In addition, the results for the synthetic syllables indicated that most of the errors in reverberation for the /s-at/context were similar to a sum of errors in two conditions: (1) with /s/-shaped noise causing overlap masking; and (2) with reverberation causing self-masking within each consonant.  相似文献   

14.
The speech understanding of persons with "flat" hearing loss (HI) was compared to a normal-hearing (NH) control group to examine how hearing loss affects the contribution of speech information in various frequency regions. Speech understanding in noise was assessed at multiple low- and high-pass filter cutoff frequencies. Noise levels were chosen to ensure that the noise, rather than quiet thresholds, determined audibility. The performance of HI subjects was compared to a NH group listening at the same signal-to-noise ratio and a comparable presentation level. Although absolute speech scores for the HI group were reduced, performance improvements as the speech and noise bandwidth increased were comparable between groups. These data suggest that the presence of hearing loss results in a uniform, rather than frequency-specific, deficit in the contribution of speech information. Measures of auditory thresholds in noise and speech intelligibility index (SII) calculations were also performed. These data suggest that differences in performance between the HI and NH groups are due primarily to audibility differences between groups. Measures of auditory thresholds in noise showed the "effective masking spectrum" of the noise was greater for the HI than the NH subjects.  相似文献   

15.
A group of 29 elderly subjects between 60.0 and 83.7 years of age at the beginning of the study, and whose hearing loss was not greater than moderate, was tested twice, an average of 5.27 years apart. The tests measured pure-tone thresholds, word recognition in quiet, and understanding of speech with various types of distortion (low-pass filtering, time compression) or interference (single speaker, babble noise, reverberation). Performance declined consistently and significantly between the two testing phases. In addition, the variability of speech understanding measures increased significantly between testing phases, though the variability of audiometric measurements did not. A right-ear superiority was observed but this lateral asymmetry did not increase between testing phases. Comparison of the elderly subjects with a group of young subjects with normal hearing shows that the decline of speech understanding measures accelerated significantly relative to the decline in audiometric measures in the seventh to ninth decades of life. On the assumption that speech understanding depends linearly on age and audiometric variables, there is evidence that this linear relationship changes with age, suggesting that not only the accuracy but also the nature of speech understanding evolves with age.  相似文献   

16.
Confusion matrices for seven synthetic steady-state vowels were obtained from ten normal and three hearing-impaired subjects. The vowels were identified at greater than 96% accuracy by the normals, and less accurately by the impaired subjects. Shortened versions of selected vowels then were used as maskers, and vowel masking patterns (VMPs) consisting of forward-masked threshold for sinusoidal probes at all vowel masker harmonics were obtained from the impaired subjects and from one normal subject. Vowel-masked probe thresholds were transformed using growth-of-masking functions obtained with flat-spectrum noise. VMPs of the impaired subjects, relative to those of the normal, were characterized by smaller dynamic range, poorer peak resolution, and poorer preservation of the vowel formant structure. These VMP characteristics, however, did not necessarily coincide with inaccurate vowel recognition. Vowel identification appeared to be related primarily to VMP peak frequencies rather than to the levels at the peaks or to between-peak characteristics of the patterns.  相似文献   

17.
This study investigated the effects of age and hearing loss on perception of accented speech presented in quiet and noise. The relative importance of alterations in phonetic segments vs. temporal patterns in a carrier phrase with accented speech also was examined. English sentences recorded by a native English speaker and a native Spanish speaker, together with hybrid sentences that varied the native language of the speaker of the carrier phrase and the final target word of the sentence were presented to younger and older listeners with normal hearing and older listeners with hearing loss in quiet and noise. Effects of age and hearing loss were observed in both listening environments, but varied with speaker accent. All groups exhibited lower recognition performance for the final target word spoken by the accented speaker compared to that spoken by the native speaker, indicating that alterations in segmental cues due to accent play a prominent role in intelligibility. Effects of the carrier phrase were minimal. The findings indicate that recognition of accented speech, especially in noise, is a particularly challenging communication task for older people.  相似文献   

18.
The effects of intensity on monosyllabic word recognition were studied in adults with normal hearing and mild-to-moderate sensorineural hearing loss. The stimuli were bandlimited NU#6 word lists presented in quiet and talker-spectrum-matched noise. Speech levels ranged from 64 to 99 dB SPL and S/N ratios from 28 to -4 dB. In quiet, the performance of normal-hearing subjects remained essentially constant in noise, at a fixed S/N ratio, it decreased as a linear function of speech level. Hearing-impaired subjects performed like normal-hearing subjects tested in noise when the data were corrected for the effects of audibility loss. From these and other results, it was concluded that: (1) speech intelligibility in noise decreases when speech levels exceed 69 dB SPL and the S/N ratio remains constant; (2) the effects of speech and noise level are synergistic; (3) the deterioration in intelligibility can be modeled as a relative increase in the effective masking level; (4) normal-hearing and hearing-impaired subjects are affected similarly by increased signal level when differences in speech audibility are considered; (5) the negative effects of increasing speech and noise levels on speech recognition are similar for all adult subjects, at least up to 80 years; and (6) the effective dynamic range of speech may be larger than the commonly assumed value of 30 dB.  相似文献   

19.
The purpose of this study was to determine the role of static, dynamic, and integrated cues for perception in three adult age groups, and to determine whether age has an effect on both consonant and vowel perception, as predicted by the "age-related deficit hypothesis." Eight adult subjects in each of the age ranges of young (ages 20-26), middle aged (ages 52-59), and old (ages 70-76) listened to synthesized syllables composed of combinations of [b d g] and [i u a]. The synthesis parameters included manipulations of the following stimulus variables: formant transition (moving or straight), noise burst (present or absent), and voicing duration (10, 30, or 46 ms). Vowel perception was high across all conditions and there were no significant differences among age groups. Consonant identification showed a definite effect of age. Young and middle-aged adults were significantly better than older adults at identifying consonants from secondary cues only. Older adults relied on the integration of static and dynamic cues to a greater extent than younger and middle-aged listeners for identification of place of articulation of stop consonants. Duration facilitated correct stop-consonant identification in the young and middle-aged groups for the no-burst conditions, but not in the old group. These findings for the duration of stop-consonant transitions indicate reductions in processing speed with age. In general, the results did not support the age-related deficit hypothesis for adult identification of vowels and consonants from dynamic spectral cues.  相似文献   

20.
Tone thresholds and speech-reception thresholds were measured in 200 individuals (400 ears) with noise-induced hearing loss. The speech-reception thresholds were measured in a quiet condition and in noise with a speech spectrum at levels of 35, 50, 65, and 80 dBA. The tone audiograms could be described by three principal components: hearing loss in the regions above 3 kHz, from 1 to 3 kHz and below 1 kHz; the speech thresholds could be described by two components: speech reception in quiet and speech reception in noise at 50-80 dBA. Hearing loss above 1 kHz was related to speech reception in noise; hearing loss at and below 1 kHz to speech reception in quiet. The correlation between the speech thresholds in quiet and in noise was only R = 0.45. An adequate predictor of the speech threshold in noise, the primary factor in the hearing handicap, was the pure-tone average at 2 and 4 kHz (PTA2,4, R = 0.72). The minimum value of the prediction error for any tone-audiometric predictor of this speech threshold was 1.2 dB (standard deviation). The prediction could not be improved by taking into account the critical ratio for low-frequency noise nor by its upward spread of masking. The prediction error is due to measurement error and to a factor common to both ears. The latter factor is ascribed to cognitive skill in speech reception. Hearing loss above 10 to 15 dB HL (hearing level) already shows an effect on the speech threshold in noise, a noticeable handicap is found at PTA2,4 = 30 dB HL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号