首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight normal listeners and eight listeners with sensorineural hearing losses were compared on a gap-detection task and on a speech perception task. The minimum detectable gap (71% correct) was determined as a function of noise level, and a time constant was computed from these data for each listener. The time constants of the hearing-impaired listeners were significantly longer than those of the normal listeners. The speech consisted of sentences that were mixed with two levels of noise and subjected to two kinds of reverberation (real or simulated). The speech thresholds (minimum signal-to-noise ratio for 50% correct) were significantly higher for the hearing-impaired listeners than for the normal listeners for both kinds of reverberation. The longer reverberation times produced significantly higher thresholds than the shorter times. The time constant was significantly correlated with all the speech threshold measures (r = -0.58 to -0.74) and a measure of hearing threshold loss also correlated significantly with all the speech thresholds (r = 0.53 to 0.95). A principal components analysis yielded two factors that accounted for the intercorrelations. The factor loadings for the time constant were similar to those on the speech thresholds for real reverberation and the loadings for hearing loss were similar to those of the thresholds for simulated reverberation.  相似文献   

2.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

3.
Consonant recognition in quiet and in noise was investigated as a function of age for essentially normal hearing listeners 21-68 years old, using the nonsense syllable test (NST) [Resnick et al., J. Acoust. Soc. Am. Suppl. 1 58, S114 (1975)]. The subjects audited the materials in quiet and at S/N ratios of +10 and +5 dB at their most comfortable listening levels (MCLs). The MCLs approximated conversational speech levels and were not significantly different between the age groups. The effects of age group, S/N condition (quiet, S/N +10, S/N +5) and NST subsets, and the S/N condition X subset interaction were all significant. Interactions involving the age factor were nonsignificant. Confusion matrices were similar across age groups, including the directions of errors between the most frequently confused phonemes. Also, the older subjects experienced performance decrements on the same features that were least accurately recognized by the younger subjects. The findings suggest that essentially normal older persons listening in quiet and in noise experience decreased consonant recognition ability, but that the nature of their phoneme confusions is similar to that of younger individuals. Even though the older subjects met the same selection criteria as did younger ones, there was an expected shift upward in auditory thresholds with age within these limits. Sensitivity at 8000 Hz was correlated with NST scores in noise when controlling for age, but the correlation between performance in noise and age was nonsignificant when controlling for the 8000-Hz threshold. These associations seem to implicate the phenomena underlying the increased 8000-Hz thresholds in the speech recognition problems of the elderly, and appear to support the concept of peripheral auditory deterioration with aging even among those with essentially normal hearing.  相似文献   

4.
Reverberation usually degrades speech intelligibility for spatially separated speech and noise sources since spatial unmasking is reduced and late reflections decrease the fidelity of the received speech signal. The latter effect could not satisfactorily be predicted by a recently presented binaural speech intelligibility model [Beutelmann et al. (2010). J. Acoust. Soc. Am. 127, 2479-2497]. This study therefore evaluated three extensions of the model to improve its predictions: (1) an extension of the speech intelligibility index based on modulation transfer functions, (2) a correction factor based on the room acoustical quantity "definition," and (3) a separation of the speech signal into useful and detrimental parts. The predictions were compared to results of two experiments in which speech reception thresholds were measured in a reverberant room in quiet and in the presence of a noise source for listeners with normal hearing. All extensions yielded better predictions than the original model when the influence of reverberation was strong, while predictions were similar for conditions with less reverberation. Although model (3) differed substantially in the assumed interaction of binaural processing and early reflections, its predictions were very similar to model (2) that achieved the best fit to the data.  相似文献   

5.
The objectives of this study were to measure suppression with bandlimited noise extended below and above the signal, at lower and higher signal frequencies, between younger and older subjects, and between subjects with normal hearing and cochlear hearing loss. Psychophysical suppression was assessed by measuring forward-masked thresholds at 0.8 and 2.0 kHz in bandlimited maskers as a function of masker bandwidth. Bandpass-masker bandwidth was increased by introducing noise components below and above the signal frequency while keeping the noise centered on the signal frequency, and also by adding noise below the signal only, and above the signal only. Subjects were younger and older adults with normal hearing and older adults with cochlear hearing loss. For all subjects, suppression was larger when noise was added below the signal than when noise was added above the signal, consistent with some physiological evidence of stronger suppression below a fiber's characteristic frequency than above. For subjects with normal hearing, suppression was greater at higher than at lower frequencies. For older subjects with hearing loss, suppression was reduced to a greater extent above the signal than below and where thresholds were elevated. Suppression for older subjects with normal hearing was poorer than would be predicted from their absolute thresholds, suggesting that age may have contributed to reduced suppression or that suppression was sensitive to changes in cochlear function that did not result in significant threshold elevation.  相似文献   

6.
7.
Temporal fine structure (TFS) sensitivity, frequency selectivity, and speech reception in noise were measured for young normal-hearing (NHY), old normal-hearing (NHO), and hearing-impaired (HI) subjects. Two measures of TFS sensitivity were used: the "TFS-LF test" (interaural phase difference discrimination) and the "TFS2 test" (discrimination of harmonic and frequency-shifted tones). These measures were not significantly correlated with frequency selectivity (after partialing out the effect of audiometric threshold), suggesting that insensitivity to TFS cannot be wholly explained by a broadening of auditory filters. The results of the two tests of TFS sensitivity were significantly but modestly correlated, suggesting that performance of the tests may be partly influenced by different factors. The NHO group performed significantly more poorly than the NHY group for both measures of TFS sensitivity, but not frequency selectivity, suggesting that TFS sensitivity declines with age in the absence of elevated audiometric thresholds or broadened auditory filters. When the effect of mean audiometric threshold was partialed out, speech reception thresholds in modulated noise were correlated with TFS2 scores, but not measures of frequency selectivity or TFS-LF test scores, suggesting that a reduction in sensitivity to TFS can partly account for the speech perception difficulties experienced by hearing-impaired subjects.  相似文献   

8.
9.
Spectral peak resolution was investigated in normal hearing (NH), hearing impaired (HI), and cochlear implant (CI) listeners. The task involved discriminating between two rippled noise stimuli in which the frequency positions of the log-spaced peaks and valleys were interchanged. The ripple spacing was varied adaptively from 0.13 to 11.31 ripples/octave, and the minimum ripple spacing at which a reversal in peak and trough positions could be detected was determined as the spectral peak resolution threshold for each listener. Spectral peak resolution was best, on average, in NH listeners, poorest in CI listeners, and intermediate for HI listeners. There was a significant relationship between spectral peak resolution and both vowel and consonant recognition in quiet across the three listener groups. The results indicate that the degree of spectral peak resolution required for accurate vowel and consonant recognition in quiet backgrounds is around 4 ripples/octave, and that spectral peak resolution poorer than around 1-2 ripples/octave may result in highly degraded speech recognition. These results suggest that efforts to improve spectral peak resolution for HI and CI users may lead to improved speech recognition.  相似文献   

10.
Sentence reception thresholds (SRTs) and babble detection thresholds (BDTs) were measured for signals presented from loudspeakers located at 0 deg and 90 deg azimuth. In addition, the S/B ratios necessary to achieve SRT in the presence of a 12-talker babble were determined under three conditions in which the speech and babble were presented from the same or spatially separated loudspeakers. In the first experiment, normal-hearing subjects were tested on two occasions. The results were highly reliable, with standard errors of the test-retest differences of less than 1dB for all conditions. In the second experiment, SRTs, BDTs, and S/B ratios were measured for three normal-hearing groups (less than or equal to 39, 40-54, and greater than or equal to 55 years) and for a fourth group with presbycusis (greater than or equal to 55 years). Presbycusics had higher SRTs and BDTs than all other groups regardless of age, and the oldest normals had higher thresholds than younger subjects. Presbycusics required higher S/B ratios than any of the normal groups, and the oldest normal group needed a higher S/B ratio compared to the youngest group. All groups demonstrated a significant advantage in S/B ratio when the sentences and babble sources were spatially separated compared to when they were presented from the same loudspeaker. There was no significant difference in the magnitude of advantage due to spatial separation of speech and noise between the normal groups regardless of age, but the presbycusics had significantly smaller advantages than all normals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Tone thresholds and speech-reception thresholds were measured in 200 individuals (400 ears) with noise-induced hearing loss. The speech-reception thresholds were measured in a quiet condition and in noise with a speech spectrum at levels of 35, 50, 65, and 80 dBA. The tone audiograms could be described by three principal components: hearing loss in the regions above 3 kHz, from 1 to 3 kHz and below 1 kHz; the speech thresholds could be described by two components: speech reception in quiet and speech reception in noise at 50-80 dBA. Hearing loss above 1 kHz was related to speech reception in noise; hearing loss at and below 1 kHz to speech reception in quiet. The correlation between the speech thresholds in quiet and in noise was only R = 0.45. An adequate predictor of the speech threshold in noise, the primary factor in the hearing handicap, was the pure-tone average at 2 and 4 kHz (PTA2,4, R = 0.72). The minimum value of the prediction error for any tone-audiometric predictor of this speech threshold was 1.2 dB (standard deviation). The prediction could not be improved by taking into account the critical ratio for low-frequency noise nor by its upward spread of masking. The prediction error is due to measurement error and to a factor common to both ears. The latter factor is ascribed to cognitive skill in speech reception. Hearing loss above 10 to 15 dB HL (hearing level) already shows an effect on the speech threshold in noise, a noticeable handicap is found at PTA2,4 = 30 dB HL.  相似文献   

12.
Many studies have shown that the right ear statistically is slightly more sensitive than the left ear, particularly in the male adult population. In this study, we examined the lateral difference in hearing sensitivity, termed the ear effect here, in an industrial noise-exposed, nonshooting population, by sex, age, and hearing level. It was found that the male population had a larger ear effect (right ear being more sensitive) than the female population. The magnitude of the ear effect was found to be significantly related to the hearing threshold level. The ear effect was highest when the threshold was between 30- and 40-dB HL. Several possible causes for the ear effect are discussed.  相似文献   

13.
These experiments examined how high presentation levels influence speech recognition for high- and low-frequency stimuli in noise. Normally hearing (NH) and hearing-impaired (HI) listeners were tested. In Experiment 1, high- and low-frequency bandwidths yielding 70%-correct word recognition in quiet were determined at levels associated with broadband speech at 75 dB SPL. In Experiment 2, broadband and band-limited sentences (based on passbands measured in Experiment 1) were presented at this level in speech-shaped noise filtered to the same frequency bandwidths as targets. Noise levels were adjusted to produce approximately 30%-correct word recognition. Frequency bandwidths and signal-to-noise ratios supporting criterion performance in Experiment 2 were tested at 75, 87.5, and 100 dB SPL in Experiment 3. Performance tended to decrease as levels increased. For NH listeners, this "rollover" effect was greater for high-frequency and broadband materials than for low-frequency stimuli. For HI listeners, the 75- to 87.5-dB increase improved signal audibility for high-frequency stimuli and rollover was not observed. However, the 87.5- to 100-dB increase produced qualitatively similar results for both groups: scores decreased most for high-frequency stimuli and least for low-frequency materials. Predictions of speech intelligibility by quantitative methods such as the Speech Intelligibility Index may be improved if rollover effects are modeled as frequency dependent.  相似文献   

14.
This study examined the effect of noise on the identification of four synthetic speech continua (/ra/-/la/, /wa/-/ja/, /i/-/u/, and say-stay) by adults with cochlea implants (CIs) and adults with normal-hearing (NH) sensitivity in quiet and noise. Significant group-by-SNR interactions were found for endpoint identification accuracy for all continua except /i/-/u/. The CI listeners showed the least NH-like identification functions for the /ra/-/la/ and /wa/-/ja/ continua. In a second experiment, NH adults identified four- and eight-band cochlear implant stimulations of the four continua, to examine whether group differences in frequency selectivity could account for the group differences in the first experiment. Number of bands and SNR interacted significantly for /ra/-/la/, /wa/-/ja/, and say-stay endpoint identification; strongest effects were found for the /ra/-/la/ and say-stay continua. Results suggest that the speech features that are most vulnerable to misperception in noise by listeners with CIs are those whose acoustic cues are rapidly changing spectral patterns, like the formant transitions in the /wa/-/ja/ and /ra/-/la/ continua. However, the group differences in the first experiment cannot be wholly attributable to frequency selectivity differences, as the number of bands in the second experiment affected performance differently than suggested by group differences in the first experiment.  相似文献   

15.
16.
The effects of noise and reverberation on the identification of monophthongs and diphthongs were evaluated for ten subjects with moderate sensorineural hearing losses. Stimuli were 15 English vowels spoken in a /b-t/ context, in a carrier sentence. The original tape was recorded without reverberation, in a quiet condition. This test tape was degraded either by recording in a room with reverberation time of 1.2 s, or by adding a babble of 12 voices at a speech-to-noise ratio of 0 dB. Both types of degradation caused statistically significant reductions of mean identification scores as compared to the quiet condition. Although the mean identification scores for the noise and reverberant conditions were not significantly different, the patterns of errors for these two conditions were different. Errors for monophthongs in reverberation but not in noise seemed to be related to an overestimation of vowel duration, and there was a tendency to weight the formant frequencies differently in the reverberation and quiet conditions. Errors for monophthongs in noise seemed to be related to spectral proximity of formant frequencies for confused pairs. For the diphthongs in both noise and reverberation, there was a tendency to judge a diphthong as the beginning monophthong. This may have been due to temporal smearing in the reverberation condition, and to a higher masked threshold for changing compared to stationary formant frequencies in the noise condition.  相似文献   

17.
The present study measured the recognition of spectrally degraded and frequency-shifted vowels in both acoustic and electric hearing. Vowel stimuli were passed through 4, 8, or 16 bandpass filters and the temporal envelopes from each filter band were extracted by half-wave rectification and low-pass filtering. The temporal envelopes were used to modulate noise bands which were shifted in frequency relative to the corresponding analysis filters. This manipulation not only degraded the spectral information by discarding within-band spectral detail, but also shifted the tonotopic representation of spectral envelope information. Results from five normal-hearing subjects showed that vowel recognition was sensitive to both spectral resolution and frequency shifting. The effect of a frequency shift did not interact with spectral resolution, suggesting that spectral resolution and spectral shifting are orthogonal in terms of intelligibility. High vowel recognition scores were observed for as few as four bands. Regardless of the number of bands, no significant performance drop was observed for tonotopic shifts equivalent to 3 mm along the basilar membrane, that is, for frequency shifts of 40%-60%. Similar results were obtained from five cochlear implant listeners, when electrode locations were fixed and the spectral location of the analysis filters was shifted. Changes in recognition performance in electrical and acoustic hearing were similar in terms of the relative location of electrodes rather than the absolute location of electrodes, indicating that cochlear implant users may at least partly accommodate to the new patterns of speech sounds after long-time exposure to their normal speech processor.  相似文献   

18.
19.
The just-noticeable-difference in frequency (jndf) for complex signals with triangular spectral envelopes is found to depend on the envelope slope. For shallow slopes (less than 140 dB/oct), jndf increases with decreasing slope. Addition of noise also impairs frequency discrimination within a region of about 20 dB above masked threshold. This is found for both maskers used: a wideband noise and a narrow-band masker which is below the signal in frequency. When wideband noise is used, frequency discrimination of complex signals with shallow slopes deteriorates more rapidly with decreasing signal-to-noise ratio than it does when the signals have steep spectral slopes.  相似文献   

20.
Usually, time reversal is studied with pulsed emissions. Here, the properties of time reversal of the acoustic field emitted by noise sources in a reverberation room are studied numerically, theoretically, and experimentally. A time domain numerical simulation of a two-dimensional enclosure shows that the intensity of a time-reversed noise is strongly enhanced right on the initial source position. A theory based on the link that exists between time reversal of noise and the "well-known" time reversal of short pulse is developed. One infers that the focal spot size equals half a wavelength and the signal to noise ratio only depends on the number of transceivers in the time reversal mirror. This last property is characteristic of the time reversal of noise. Experimental results are obtained in a 5 X 3 X 3 m3 reverberation room. The working frequency range varies from 300 Hz to 2 kHz. The ability of the time reversal process to physically reconstruct the image of two noise sources is studied. To this end, care is given to the technique to separate two close random sources, and also to the influence of temperature fluctuations on the focusing quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号