首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Column generation techniques have become a widely used technique to successfully solve large (integer) linear programs. One of the keys to obtaining a practically efficient algorithm is to have a fast method to limit the pricing of new columns to a small set. We study a large scale real-world vehicle dispatching problem with soft time windows which can be modeled as an integer linear program of set partitioning type. We develop a new pruning scheme based on matchings in order to speed up the branch-and-bound enumeration in the column generation process. Computational results on real-world data illustrate the effectiveness of the new pruning scheme.  相似文献   

2.
After giving a suitable model for the cutting strips problem, we present a branch-and-price algorithm for it by combining the column generation technique and the branch-and-hound method with LP relaxations. Some theoretical issues and implementation details about the algorithm are discussed, including the solution of the pricing subproblem, the quality of LP relaxations, the branching scheme as well as the column management. Finally, preliminary computarional experience is reported.  相似文献   

3.
In the multiple container loading cost minimization problem (MCLCMP), rectangular boxes of various dimensions are loaded into rectangular containers of various sizes so as to minimize the total shipping cost. The MCLCMP can be naturally modeled as a set cover problem. We generalize the set cover formulation by introducing a new parameter to model the gross volume utilization of containers in a solution. The state-of-the-art algorithm tackles the MCLCMP using the prototype column generation (PCG) technique. PCG is an effective technique for speeding up the column generation technique for extremely hard optimization problems where their corresponding pricing subproblems are NP-hard. We propose a new approach to the MCLCMP that combines the PCG technique with a goal-driven search. Our goal-driven prototype column generation (GD-PCG) algorithm improves the original PCG approach in three respects. Computational experiments suggest that all three enhancements are effective. Our GD-PCG algorithm produces significantly better solutions for the 350 existing benchmark instances than all other approaches in the literature using less computation time. We also generate two new set instances based on industrial data and the classical single container loading instances.  相似文献   

4.
The multiple container loading cost minimization problem (MCLCMP) is a practical and useful problem in the transportation industry, where products of various dimensions are to be loaded into containers of various sizes so as to minimize the total shipping cost. The MCLCMP can be naturally formulated as a set cover problem and solved using column generation techniques, which is a popular method for handling huge numbers of variables. However, the direct application of column generation is not effective because feasible solutions to the pricing subproblem is required, which for the MCLCMP is NP-hard. We show that efficiency can be greatly improved by generating prototypes that approximate feasible solutions to the pricing problem rather than actual columns. For many hard combinatorial problems, the subproblem in column generation based algorithms is NP-hard; if suitable prototypes can be quickly generated that approximate feasible solutions, then our strategy can also be applied to speed up these algorithms.  相似文献   

5.
《Optimization》2012,61(2):171-200
Column generation is an increasingly popular basic tool for the solution of large-scale mathematical programming problems. As problems being solved grow bigger, column generation may however become less efficient in its present form, where columns typically are not optimizing, and finding an optimal solution instead entails finding an optimal convex combination of a huge number of them. We present a class of column generation algorithms in which the columns defining the restricted master problem may be chosen to be optimizing in the limit, thereby reducing the total number of columns needed. This first article is devoted to the convergence properties of the algorithm class, and includes global (asymptotic) convergence results for differentiable minimization, finite convergence results with respect to the optimal face and the optimal solution, and extensions of these results to variational inequality problems. An illustration of its possibilities is made on a nonlinear network flow model, contrasting its convergence characteristics to that of the restricted simplicial decomposition (RSD) algorithm.  相似文献   

6.
7.
When vehicle routing problems with additional constraints, such as capacity or time windows, are solved via column generation and branch-and-price, it is common that the pricing subproblem requires the computation of a minimum cost constrained path on a graph with costs on the arcs and prizes on the vertices. A common solution technique for this problem is dynamic programming. In this paper we illustrate how the basic dynamic programming algorithm can be improved by bounded bi-directional search and we experimentally evaluate the effectiveness of the enhancement proposed. We consider as benchmark problems the elementary shortest path problems arising as pricing subproblems in branch-and-price algorithms for the capacitated vehicle routing problem, the vehicle routing problem with distribution and collection and the capacitated vehicle routing problem with time windows.  相似文献   

8.
We consider the three-stage two-dimensional bin packing problem (2BP) which occurs in real-world applications such as glass, paper, or steel cutting. We present new integer linear programming formulations: models for a restricted version and the original version of the problem are developed. Both only involve polynomial numbers of variables and constraints and effectively avoid symmetries. Those models are solved using CPLEX. Furthermore, a branch-and-price (B&P) algorithm is presented for a set covering formulation of the unrestricted problem, which corresponds to a Dantzig-Wolfe decomposition of the polynomially-sized model. We consider column generation stabilization in the B&P algorithm using dual-optimal inequalities. Fast column generation is performed by applying a hierarchy of four methods: (a) a fast greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally (d) solving the complete pricing problem using CPLEX. Computational experiments on standard benchmark instances document the benefits of the new approaches: The restricted version of the integer linear programming model can be used to quickly obtain near-optimal solutions. The unrestricted version is computationally more expensive. Column generation provides a strong lower bound for 3-stage 2BP. The combination of all four pricing algorithms and column generation stabilization in the proposed B&P framework yields the best results in terms of the average objective value, the average run-time, and the number of instances solved to proven optimality.  相似文献   

9.
Column generation is involved in the current most efficient approaches to routing problems. Set partitioning formulations model routing problems by considering all possible routes and selecting a subset that visits all customers. These formulations often produce tight lower bounds and require column generation for their pricing step. The bounds in the resulting branch-and-price are tighter when elementary routes are considered, but this approach leads to a more difficult pricing problem. Balancing the pricing with route relaxations has become crucial for the efficiency of the branch-and-price for routing problems. Recently, the ng-routes relaxation was proposed as a compromise between elementary and non-elementary routes. The ng-routes are non-elementary routes with the restriction that when following a customer, the route is not allowed to visit another customer that was visited before if they belong to a dynamically computed set. The larger the size of these sets, the closer the ng-route is to an elementary route. This work presents an efficient pricing algorithm for ng-routes and extends this algorithm for elementary routes. Therefore, we address the Shortest Path Problem with Resource Constraint (SPPRC) and the Elementary Shortest Path Problem with Resource Constraint (ESPPRC). The proposed algorithm combines the Decremental State-Space Relaxation technique (DSSR) with completion bounds. We apply this algorithm for the Generalized Vehicle Routing Problem (GVRP) and for the Capacitated Vehicle Routing Problem (CVRP), demonstrating that it is able to price elementary routes for instances up to 200 customers, a result that doubles the size of the ESPPRC instances solved to date.  相似文献   

10.
In this paper, we considered the problem of Curriculum-Based Course Timetabling, i.e., assigning weekly lectures to a time schedule and rooms. We developed a Column Generation algorithm based on a pattern formulation of the time scheduling part of the problem by Bagger et al. (2016). The pattern formulation is an enumeration of all schedules by which each course can be assigned on each day; it is a lower bounding model. Pattern enumeration has also been considered in Burke (2008), where the authors enumerated all schedules to which each curriculum can be assigned on each day. We applied the Dantzig–Wolfe reformulation, so each column corresponded to a schedule for an entire day.We solved the reformulation with the Column Generation algorithm, where each pricing problem generated a full schedule for a single day. We provided a pre-processing technique that, on average, removed approximately 45% of the pattern variables in the pricing problems. We then extended the pre-processing technique into inequalities that we added to the model. Lastly, we describe how we applied Local Branching to the pricing problem by using the columns generated in previous iterations.We compare the lower bounds we obtained, with other methods from literature, on 20 data instances of real-world applications. For 16 instances the optimal solutions are known, but the remaining four are still open. Our approach improved the best-known lower bound for all four open instances, and decreased the average gap from 24 to 11%.  相似文献   

11.
The best performing exact algorithms for the capacitated vehicle routing problem developed in the last 10 years are based in the combination of cut and column generation. Some authors only used cuts expressed over the variables of the original formulation, in order to keep the pricing subproblem relatively easy. Other authors could reduce the duality gaps by also using a restricted number of cuts over the master LP variables, stopping when the pricing becomes prohibitively hard. A particularly effective family of such cuts are the subset row cuts. This work introduces a technique for greatly reducing the impact on the pricing of these cuts, thus allowing much more cuts to be added. The newly proposed branch-cut-and-price algorithm also incorporates and combines for the first time (often in an improved way) several elements found in previous works, like route enumeration and strong branching. All the instances used for benchmarking exact algorithms, with up to 199 customers, were solved to optimality. Moreover, some larger instances with up to 360 customers, only considered before by heuristic methods, were solved too.  相似文献   

12.
This work focuses on an improved exact algorithm for addressing an NP-hard network pricing problem. The method involves an efficient and partial generation of candidate solutions, a recursive scheme for generating improved upper bounds, and a column generation procedure for solving the network-structured subproblems. Its efficiency is assessed against both randomly generated instances involving three distinct topologies as well as instances based on real life situations in telecommunication and freight transportation.  相似文献   

13.
Nonlinear clearing functions, an idea initially suggested to reflect congestion effects in production planning, are used to express throughput of facilities prone to congestion in a facility location problem where each demand site is served by exactly one facility. The traditional constant capacity constraint for a facility is replaced with the nonlinear clearing function. The resulting nonlinear integer problem is solved by a column generation heuristic in which initial columns for the restricted master problem are generated by known existing algorithms and additional columns by a previously developed dynamic programming algorithm. Computational experimentation in terms of dual gap and CPU time based on both randomly generated and published data sets show not only clear dominance of the column generation over a Lagrangian heuristic previously developed, but also the high quality of results from the suggested heuristic for large problems.  相似文献   

14.
In the Distance Constrained Multiple Vehicle Traveling Purchaser Problem (DC-MVTPP) a fleet of vehicles is available to visit suppliers offering products at different prices and with different quantity availabilities. The DC-MVTPP consists in selecting a subset of suppliers so to satisfy products demand at the minimum traveling and purchasing costs, while ensuring that the distance traveled by each vehicle does not exceed a predefined upper bound. The problem generalizes the classical Traveling Purchaser Problem (TPP) and adds new realistic features to the decision problem. In this paper we present different mathematical programming formulations for the problem. A branch-and-price algorithm is also proposed to solve a set partitioning formulation where columns represent feasible routes for the vehicles. At each node of the branch-and-bound tree, the linear relaxation of the set partitioning formulation, augmented by the branching constraints, is solved through column generation. The pricing problem is solved using dynamic programming. A set of instances has been derived from benchmark instances for the asymmetric TPP. Instances with up to 100 suppliers and 200 products have been solved to optimality.  相似文献   

15.
The biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generated.  相似文献   

16.
In multistage cutting stock problems (CSP) the cutting process is distributed over several successive stages. Every stage except the last one produces intermediate products. The list of intermediate products may be given or arbitrary. The goal is to minimize the total amount of material taken out of stock to cut finished products sufficient to meet customer demands. If the intermediate sizes are given, the column generation technique can be applied to multistage cutting problems. If the intermediate sizes are not given then another dimension is added to the problem complexity. We propose a special procedure for this case that dynamically generates both rows (intermediate sizes) and columns (patterns). We refer to this method as row-and-column generation. The method uses an auxiliary problem embedded into the frame of the revised simplex algorithm. It is a non-linear knapsack problem that can be solved efficiently. In contrast to the column generation method the developed technique cannot guarantee the optimal solution. However, the results of computational experiments are very promising and prove that the method is a valuable addition to the set of tools for modeling and solving multistage CSPs.  相似文献   

17.
This paper deals with numerical behavior of a recently presented column generation approach for optimization of so called step-and-shoot radiotherapy treatment plans. The approach and variants of it have been reported to be efficient in practice, finding near-optimal solutions by generating only a low number of columns. The impact of different restrictions on the columns in a column generation method is studied, and numerical results are given for quadratic programs corresponding to three patient cases. In particular, it is noted that with a bound on the two-norm of the columns, the method is equivalent to the conjugate-gradient method. Further, the above-mentioned column generation approach for radiotherapy is obtained by employing a restriction based on the infinity-norm and non-negativity. The column generation method has weak convergence properties if restricted to generating feasible step-and-shoot plans, with a “tailing-off” effect for the objective values. However, the numerical results demonstrate that, like the conjugate-gradient method, a rapid decrease of the objective value is obtained in the first few iterations. For the three patient cases, the restriction on the columns to generate feasible step-and-shoot plans has small effect on the numerical efficiency.  相似文献   

18.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

19.
A column generation method for inverse shortest path problems   总被引:3,自引:0,他引:3  
In this paper we formulate an inverse shortest path problem as a special linear programming problem. A column generation scheme is developed that is able to keep most columns of the LP model implicit and to generate necessary columns by shortest path algorithms. This method can get an optimal solution in finitely many steps. Some numerical results are reported to show that the algorithm has a good performance.The authors gratefully acknowledge the partial support of Croucher Foundation.  相似文献   

20.
In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate our approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号