共查询到10条相似文献,搜索用时 5 毫秒
1.
五零能模式材料是一种新型人工超材料,特征为其弹性模量矩阵的6个特征值中5个为零,可用等效体积模量来描述,表现出类似流体的性质,可被应用于声学隐声斗篷的设计中.然而,根据Norris A N[1]提出的理论,设计五零能模式材料时,与应用变换声学方法设计一般声学人工超材料不同,要求其满足一非线性偏微分方程约束.论文利用非线性有限元的完全拉格朗日方法,推导了这一偏微分方程的弱形式,并给出了相应的非线性有限元计算列式,以及迭代求解的具体算法.最后,给出了五零能摸式材料设计的二维和三维坐标变换数值算例. 相似文献
2.
3.
C60是一种纳米分子,具有许多非常重要的物理化学性质,采用Raman光谱可以测得它的分子振动特征,正是这种振动特征可以明显地表征出它的分子结构和原子键合关系。本文基于分子力学的基本分析原理,给出一种用于描述碳-碳共价键在小位移情形下力能关系的计算单元,称为碳-碳键合单元,重点讨论该单元在实际建模过程中的坐标变换问题,将所建立的碳-碳键合单元用于C60纳米分子的振动分析,分别给出了C60纳米分子的Ag(1)、Ag(2)、Hg(1)三个特征振型和频率,并与群论的分析结果、Raman光谱实验结果进行比较,证明了所提出分析方法的正确性和实用性。 相似文献
4.
Parallel finite element computation of incompressible magnetohydrodynamics based on three iterations
Based on local algorithms, some parallel finite element(FE) iterative methods for stationary incompressible magnetohydrodynamics(MHD) are presented. These approaches are on account of two-grid skill include two major phases: find the FE solution by solving the nonlinear system on a globally coarse mesh to seize the low frequency component of the solution, and then locally solve linearized residual subproblems by one of three iterations(Stokes-type, Newton, and Oseen-type) on subdomains with fine... 相似文献
5.
对于平面裂纹问题,针对扩展有限元法和无网格伽辽金法的不足,从结构的整体位移模式出发,提出了一种新的数值模拟方法。在整个求解域内构造其试探函数,并引入裂纹修正项描述裂尖处的奇异性和裂纹面的强间断特性;同时,提出了一种新的强制边界条件施加方法,通过引入位移边界水平集函数,将位移边界条件包含在近似位移场的表达式中,有效地解决了位移边界条件问题,减小了刚度矩阵的阶数,非常方便地消除了刚度矩阵的奇异性,降低了线性方程组的求解难度。含裂纹矩形平板结构的数值算例验证了该方法的有效性。 相似文献
6.
This work focuses upon the development of a wavelet-based variant of the variational multiscale method (VMS) for accurate and efficient large eddy simulation (LES) called wavelet-based VMS-LES (WMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon the pressure-stabilized discontinuous Galerkin finite element method (DG-FEM). The VMS approach is designed to produce an a priori scale separation of the governing equations, in a manner which makes no assumptions on either the boundary conditions or the mesh uniformity. Using second-generation wavelets (SGWs) elementwise for scale separation ensures, on one hand, the preservation of the computational compactness of the DG-FEM scheme and, on the other hand, the ability to achieve scale separation in wavenumber space. The optimal space-frequency localization property of the SGW provides an improvement over the commonly used Legendre polynomials. The suitability of the elementwise SGW scale-separation operation as a tool for error indication has been demonstrated in an h-adaptive computation of the reentrant corner test case. Finally, the DG-FEM solver and the WMS-LES method have been assessed through simulations upon the three-dimensional Taylor-Green vortex test case. Our results indicate that the WMS-LES approach exhibits a distinct improvement over the monolevel LES approach. This effect is not produced by a change in the magnitude of the subgrid dissipation but rather by the redistribution of the subgrid dissipation in wavenumber space. 相似文献
7.
This paper presents the linear stability analysis of a round jet in a radially unbounded domain using a spectral Petrov–Galerkin scheme coped with exponential coordinate transformation based on Fornberg's treatment. A Fourier–Chebyshev Petrov–Galerkin spectral method is described for the computation of the linear stability equations based on half a Gauss–Lobatto mesh. Complex basis functions presented here are exponentially mapped as Chebyshev functions, which satisfy the pole condition exactly at the origin, and can be used to expand vector functions efficiently by using the solenoidal condition. The mathematical formulation is presented in detail focusing on the solenoidal vector field used for the approximation of the flow. The scheme provides spectral accuracy in the present cases and the numerical results are in agreement with former works. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
Here, the effects of localization and propagation of martensitic phase transformation on the response of SMA thin structures subjected to thermo-mechanical loadings are investigated using nonlocal constitutive model in conjunction with finite element method. The governing equations are derived based on variational principle considering thermo-mechanical equilibrium and the spatial distribution of the nonlocal volume fraction of martensite during transformation. The nonlocal volume fraction of martensite is defined as a weighted average of the local volume fraction of martensite over a domain characterized by an internal length parameter. The local version of the thermo-mechanical behavior model derived from micromechanics considers the local volume fraction of martensite and the mean transformation strain. A 4-noded quadrilateral plane stress element with three degrees of freedom per node accounting for in-plane displacements and the nonlocal volume fraction of martensite is developed. Numerical simulations are conducted to bring out the influence of material and geometrical heterogeneities (perturbations/defects) on the localization and propagation of phase transformation in SMA thin structures. Also, a sensitivity analysis of the material response due to the localization and the other related model parameters is carried out. The detailed investigation done here clearly shows that the localization of phase transformation has significant effect on the response of shape memory alloys. 相似文献
9.
An indirect shooting method based on the POD/DEIM technique for distributed optimal control of the wave equation 下载免费PDF全文
This paper presents a fast numerical method, based on the indirect shooting method and Proper Orthogonal Decomposition (POD) technique, for solving distributed optimal control of the wave equation. To solve this problem, we consider the first‐order optimality conditions and then by using finite element spatial discretization and shooting strategy, the solution of the optimality conditions is reduced to the solution of a series of initial value problems (IVPs). Generally, these IVPs are high‐order and thus their solution is time‐consuming. To overcome this drawback, we present a POD indirect shooting method, which uses the POD technique to approximate IVPs with smaller ones and faster run times. Moreover, in the presence of the nonlinear term, to reduce the order of the nonlinear calculations, a discrete empirical interpolation method (DEIM) is applied and a POD/DEIM indirect shooting method is developed. We investigate the performance and accuracy of the proposed methods by means of 4 numerical experiments. We show that the presented POD and POD/DEIM indirect shooting methods dramatically reduce the CPU time compared to the full indirect shooting method, whereas there is no significant difference between the accuracy of the reduced and full indirect shooting methods. 相似文献
10.
Finite element analysis of fluid flow with moving free surface has been performed in 2‐D and 3‐D. The new VOF‐based numerical algorithm that has been proposed by the present authors (Int. J. Numer. Meth. Fluids, submitted) was applied to several 2‐D and 3‐D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby‐cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2‐D and 3‐D cavity filling and sloshing problems in order to demonstrate the versatility and effectiveness of the scheme. The proposed numerical algorithm resolved successfully the free surfaces interacting with each other. The simulated results demonstrated applicability of the proposed numerical algorithm to the practical problems of large free surface motion. It has been also demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non‐uniform grid systems and can be extended to 3‐D free surface flow problems without additional efforts. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献