首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emergence refers to the existence or formation of collective behaviors in complex systems. Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evolution of complex system. In this framework, the statistical ensemble composed of M microstates of a complex system with N agents is defined by the normalized N × M matrix A, whose columns represent microstates and order of row is consist with the time. The ensemble matrix A can be decomposed as ■, where r= min(N,M), eigenvalue σIbehaves as the probability amplitude of the eigen microstate U_I so that ■ and U_I evolves following V_I. In a disorder complex system, there is no dominant eigenvalue and eigen microstate. When a probability amplitude σIbecomes finite in the thermodynamic limit, there is a condensation of the eigen microstate UIin analogy to the Bose–Einstein condensation of Bose gases. This indicates the emergence of U_I and a phase transition in complex system. Our framework has been applied successfully to equilibrium threedimensional Ising model, climate system and stock markets. We anticipate that our eigen microstate method can be used to study non-equilibrium complex systems with unknown orderparameters, such as phase transitions of collective motion and tipping points in climate systems and ecosystems.  相似文献   

2.
The scalar one-loop four-point function with one massless vertex is evaluated analytically by employing the loop regularization method. According to the method, a characteristic scale μ_s is introduced to regularize the divergent integrals. The infrared divergent parts, which take the form of ln~2(λ~2/μ_s~2)and ln(λ~2/μ_s~2)as μ_s→ 0 where λ is a constant and expressed in terms of masses and Mandelstam variables, and the infrared stable parts are well separated. The result is shown explicitly via 44 dilogarithms in the kinematic sector in which our evaluation is valid.  相似文献   

3.
Searching for the top squark(stop)is a key task to test the naturalness of SUSY.Different from stop pair production,single stop production relies on its electroweak properties and can provide some unique signatures.Following the single production process pp→t~1X(~)1→tX~10X~1-,the top quark has two decay channels:leptonic channel and hadronic channel.In this paper,we probe the observability of these two channels in a simplified minimal supersymmetric standard model scenario.We find that,at the 27 TeV LHC with the integrated luminosity of L=15 ab-1,mt-1<1900 GeV andμ<750 GeV can be excluded at 2σthrough the leptonic mono-top channel,while mt-1<1200 GeV andμ<350 GeV can be excluded at 2σthrough the hadronic channel.  相似文献   

4.
We investigate prospects of building a future accelerator-based neutrino oscillation experiment in China, including site selection, beam optimization and tau neutrino physics aspects. CP violation, non-unitary mixing and non-standard neutrino interactions are discussed. We simulate neutrino beam setups based on muon and beta decay techniques and compare Chinese laboratory sites by their expected sensitivities. A case study on the Super Proton–Proton Collider and the China JinPing Laboratory is also presented. It is shown that the muon-decay-based beam setup can measure the Dirac CP phase by about 14.2° precision at 1σ CL, whereas non-unitarity can be probed down to ∣αij∣ ≲ 0.37 (ij = 1, 2, 3) and non-standard interactions to $| {\epsilon }_{{\ell }{\ell }^{\prime} }^{m}| \lesssim $ 0.11 (${\ell }\ne {\ell }^{\prime} =e$, μ, τ) at 90% CL, respectively.  相似文献   

5.
Based on a high level ab initio calculation which is carried out with the multireference configuration interaction method under the aug-cc-pVXZ (AVXZ) basis sets, X=T, Q, 5, the accurate potential energy curves (PECs) of the ground state ${\rm{X}}{}^{{\rm{1}}}{\rm{\Sigma }}_{g}^{+}$ and the first excited state ${\rm{A}}{}^{{\rm{1}}}{\rm{\Sigma }}_{u}^{+}$ of Li2 are constructed. By fitting the ab initio potential energy points with the Murrell–Sorbie potential function, the analytic potential energy functions (APEFs) are obtained. The molecular bond length at the equilibrium (Re), the potential well depth (De), and the spectroscopic constants (Be, ωe, αe, and ωeχe) for the ${\rm{X}}{}^{{\rm{1}}}{\rm{\Sigma }}_{g}^{+}$ state and the ${\rm{A}}{}^{{\rm{1}}}{\rm{\Sigma }}_{u}^{+}$ state are deduced from the APEFs. The vibrational energy levels of the two electronic states are obtained by solving the time-independent Schrödinger equation with the Fourier grid Hamiltonian method. All the spectroscopic constants and the vibrational levels agree well with the experimental results. The Franck–Condon factors (FCFs) corresponding to the transitions from the vibrational level (v′=0) of the ground state to the vibrational levels (v=074) of the first excited state have been calculated. The FCF for the vibronic transition of ${\rm{A}}{}^{{\rm{1}}}{\rm{\Sigma }}_{u}^{+}$(v=0) ←${\rm{X}}{}^{{\rm{1}}}{\rm{\Sigma }}_{g}^{+}$(v′=0) is the strongest. These PECs and corresponding spectroscopic constants provide reliable theoretical references to both the spectroscopic and the molecular dynamic studies of the Li2 dimer.  相似文献   

6.
In this paper,we discuss the P-v criticality and the heat engine efficiency in the Bardeen EinsteinGauss-Bonnet (EGB) AdS black hole space-time.From the P-v plane in the extended phase space,we find that the Bardeen EGB-AdS black hole conforms to Van der Waals (VdW) liquid-gas systems in the extended phase space,and P_cv_/T_c=0.369 of the Bardeen EGB-AdS black hole system is between 0.3333 of the Gauss-Bonnet AdS black hole system and 0.375 of the VdW gas system in the 5-dimensions.Then we construct a heat engine by taking the Bardeen EGB-AdS black hole as the working substance,and consider a rectangle heat cycle in the P-v plane.We find that two cases with different Bardeen parameter e and Gauss-Bonnet parameter a both have the same situation,i.e.as the entropy difference between small black hole and large black hole S2 increases,the heat engine efficiency will increase.Furthermore,as the Bardeen parameter e increases,the efficiency will decrease.However,for the Gauss-Bonnet parameter a,the result is contrary.By comparing with the well-know Carnot heat engine efficiency,we have found the efficiency ratioη/η_c versus entropy S_2 is bounded below l,so it is coincided with the thermodynamical second law.  相似文献   

7.
In this work,we present a unified transformation method directly by using the inverse scattering method for a generalized derivative nonlinear Schr?dinger(DNLS)equation.By establishing a matrix Riemann-Hilbert problem and reconstructing potential function q(x,t)from eigenfunctions{Gj(x,t,η)}3/1 in the inverse problem,the initial-boundary value problems for the generalized DNLS equation on the half-line are discussed.Moreover,we also obtain that the spectral functions f(η),s(η),F(η),S(η)are not independent of each other,but meet an important global relation.As applications,the generalized DNLS equation can be reduced to the Kaup-Newell equation and Chen-Lee-Liu equation on the half-line.  相似文献   

8.
We systematically construct all the tetraquark currents of JPC = 1++ with the quark configurations $[{cq}][\bar{c}\bar{q}]$, $[\bar{c}q][\bar{q}c]$, and $[\bar{c}c][\bar{q}q]$ (q = u/d). Their relations are derived using the Fierz rearrangement of the Dirac and color indices, through which we study decay properties of the X(3872) under both the compact tetraquark and hadronic molecule interpretations. We conduct a search for the X(3872) → χc0π, ηcππ, and χc1ππ decay processes in particle experiments.  相似文献   

9.
Due to improvements in the sensitivity of gravitational wave (GW) detectors, the detection of GWs originating from the fundamental quasi-normal mode (f-mode) of neutron stars has become possible. The future detection of GWs originating from the f-mode of neutron stars will provide a potential way to improve our understanding of the nature of nuclear matter inside neutron stars. In this work, we investigate the constraint imposed by the f-mode oscillation of neutron stars on the symmetry energy of nuclear matter using Bayesian analysis and parametric EOS. It is shown that if the frequency of the f-mode of a neutron star of known mass is observed precisely, the symmetry energy at twice the saturation density (Esym(2ρ0)) of nuclear matter can be constrained within a relatively narrow range. For example, when all the following parameters are within the given intervals: 220 ≤ K0 ≤ 260 MeV, 28 ≤ Esym(ρ0) ≤ 36 MeV, 30 ≤ L ≤ 90 MeV, −800 ≤ J0 ≤ 400 MeV, − 400 ≤ Ksym ≤ 100 MeV, −200 ≤ Jsym ≤ 800 MeV, Esym(2ρ0) will be constrained to within ${48.8}_{-5.5}^{+6.6}$ MeV if the f-mode frequency of a canonical neutron star (1.4 M) is observed to be 1.720 kHz with a 1% relative error. Furthermore, if only f-mode frequency detection is available, i.e. there is no stellar mass measurement, a precisely detected f-mode frequency can also impose an accurate constraint on the symmetry energy. For example, given the same parameter space and the same assumed observed f-mode frequency mentioned above, and assuming that the stellar mass is in the range of 1.2–2.0 M, Esym(2ρ0) will be constrained to within ${49.5}_{-6.8}^{+8.1}\,\mathrm{MeV}$. In addition, it is shown that a higher slope of 69 ≤ L ≤ 143 MeV will give a higher posterior distribution of Esym(2ρ0), ${53.8}_{-6.4}^{+7.0}\,\mathrm{MeV}$.  相似文献   

10.
Level structure and electromagnetic transitions in ~(98)Mo have been investigated on the basis of the proton-neutron interacting boson model(IBM-2) by considering the energy difference between neutron boson ε_ν and proton boson ε_π. The results are compared with the recent experimental data and it is observed that they are in good agreement. In particular, the strongest M1 transition from 2_5~+ state to 2_2~+ can be well reproduced, from which one can determine the 2_5~+ as an mixed-symmetry(MS) state. We have calculated the electric monopole strength ρ~2(E0,0_2~+→0_1~+), and our result agrees with the experimental one. The calculation indicates that shape coexistence and MS states are simultaneously well described using IBM-2.  相似文献   

11.
In this work, we use the most recent publicly available type Ia supernova (SNIa) compilations and H(z) data. A well formulated cosmological model based on Bianchi type I (BI) metric is implemented in the presence of the Ricci dark energy model. Using the maximum likelihood technique, we estimate the present value of Hubble's constant H0 = 70.339 ± 0.743, matter density parameter ${{\rm{\Omega }}}_{{m}_{0}}=0.297\pm 0.031$, anisotropy parameter ${{\rm{\Omega }}}_{{\sigma }_{0}}=\,$−0.004 01 ± 0.001 07 within $1\sigma ^{\prime} $ confidence level by bounding our derived model with recent joint Pantheon and H(z) data. We have constrained the present value of the equation of state parameter as ωde = −1.17 joint with the observational data. The present value of the deceleration parameter of the Universe in the derived model is obtained as ${q}_{0}=-{0.749}_{-0.086}^{+0.076}$. Transition redshift is also derived as ${z}_{\mathrm{tr}}\sim 0.551$ with the recent observations (Pantheon + H(z)) datasets. Finally, we compare the anisotropy effects on the evolution of H(z) for the proposed model under consideration with different observational datasets.  相似文献   

12.
《Physica A》1995,220(3-4):585-598
An antiferromagnetic equivalent-neighbour Heisenberg interaction Hi between impurity spins is added to the reduced s-d Hamiltonian Hr previously introduced by simplifying the Kondo s-d exchange Hamiltonian HK. Asymptotic mean-field theory is developed for Hr + Hi, in the presence and absence of external magnetic field, and applied to (La1−xCex)Al2 alloys. Specific heat ci(T) and zero-field susceptibility χi(0,T) curves for (La1−xCex)Al2 are depicted. The coupling constants of Hr + Hi and conduction bandwidth are adjusted so that Tc temperatures for x = 0.2, 0.1 are equal to the experimental values. ci(T) exhibits a jump at Tc and is decreasing for T < Tc. χi(0,T) has a first order pole at Tc which corresponds to the maximum of experimental susceptibility and χi(0,0) > 0. These results improve those obtained earlier on the grounds of Hr theory.  相似文献   

13.
In this work, we investigate the constraints on the total neutrino mass in the scenario of vacuum energy interacting with cold dark matter (abbreviated as IΛCDM) by using the latest cosmological observations. We consider four typical interaction forms, i.e. $Q=\beta H{\rho }_{\mathrm{de}}$, $Q=\beta H{\rho }_{{\rm{c}}}$, $Q=\beta {H}_{0}{\rho }_{\mathrm{de}}$, and $Q=\beta {H}_{0}{\rho }_{{\rm{c}}}$, in the IΛCDM scenario. To avoid the large-scale instability problem in interacting dark energy models, we employ the extended parameterized post-Friedmann method for interacting dark energy to calculate the perturbation evolution of dark energy in these models. The observational data used in this work include the cosmic microwave background (CMB) measurements from the Planck 2018 data release, the baryon acoustic oscillation (BAO) data, the type Ia supernovae (SN) observation (Pantheon compilation), and the 2019 local distance ladder measurement of the Hubble constant H0 from the Hubble Space Telescope. We find that, compared with those in the ΛCDM+$\sum {m}_{\nu }$ model, the constrains on $\sum {m}_{\nu }$ are looser in the four IΛCDM+$\sum {m}_{\nu }$ models. When considering the three mass hierarchies of neutrinos, the constraints on $\sum {m}_{\nu }$ are tightest in the degenerate hierarchy case and loosest in the inverted hierarchy case. In addition, in the four IΛCDM+$\sum {m}_{\nu }$ models, the values of coupling parameter β are larger using the CMB+BAO+SN+H0 data combination than that using the CMB+BAO+SN data combination, and β>0 is favored at more than 1σ level when using CMB+BAO+SN+H0 data combination. The issue of the H0 tension is also discussed in this paper. We find that, compared with the ΛCDM+$\sum {m}_{\nu }$ model, the H0 tension can be alleviated in the IΛCDM+$\sum {m}_{\nu }$ model to some extent.  相似文献   

14.
15.
It is known that the Korteweg–de Vries (KdV) equation is a geodesic flow of an L2 metric on the Bott–Virasoro group. This can also be interpreted as a flow on the space of projective connections on S1. The space of differential operators Δ(n)=∂n+u2n−2++un form the space of extended or generalized projective connections. If a projective connection is factorizable Δ(n)=(∂−((n+1)/2−1)p1)(∂+(n−1)/2pn) with respect to quasi primary fields pi’s, then these fields satisfy ∑i=1n((n+1)/2−i)pi=0. In this paper we discuss the factorization of projective connection in terms of affine connections. It is shown that the Burgers equation and derivative non-linear Schrödinger (DNLS) equation or the Kaup–Newell equation is the Euler–Arnold flow on the space of affine connections.  相似文献   

16.
Applying the transfer matrix and Green's function methods, we study the valley-resolved transport properties of zigzag graphene nanoribbon (ZGNR) junctions. The width of the left and right ZGNRs are NL and NR, and NLNR. The step/dip positions of the conductance G, the intravalley transmission coefficients (TKK and ${T}_{{K}^{{\prime} }{K}^{{\prime} }}$), and the valley polarization efficiency ${P}_{{{KK}}^{{\prime} }}$ correspond to the subband edges of the right/left ZGNR that are controlled by NR/NL. The intervalley transmission coefficients (${T}_{{{KK}}^{{\prime} }}$ and ${T}_{{K}^{{\prime} }K}$) exhibit peaks at most of the subband edge of the left and right ZGNRs. In the bulk gap of the right ZGNR, ${T}_{{{KK}}^{{\prime} }}$ $={T}_{{K}^{{\prime} }K}$=0, and ${P}_{{{KK}}^{{\prime} }}$ = ±1, the valley polarization is well preserved. As NR increases, the energy region for ${P}_{{{KK}}^{{\prime} }}$ = ±1 decreases. When NL is fixed and NR decreases, G, TKK, ${T}_{{K}^{{\prime} }{K}^{{\prime} }}$ and ${P}_{{{KK}}^{{\prime} }}$ exhibit more and more dips, and the peaks of ${T}_{{{KK}}^{{\prime} }}$ (${T}_{{K}^{{\prime} }K}$) become more and more high, especially when (NLNR)/2 is odd. These characters are quite useful for manipulating the valley dependent transport properties of carriers in ZGNR junctions by modulating NL or NR, and our results are helpful to the design of valleytronics based on ZGNR junctions.  相似文献   

17.
It is demonstrated that for the isospin I = 1/2 πN scattering amplitude, TI=1/2(s, t), $s={\left({m}_{N}^{2}-{m}_{\pi }^{2}\right)}^{2}/{m}_{N}^{2}$ and $s={m}_{N}^{2}+2{m}_{\pi }^{2}$ are two accumulation points of poles on the second sheet of complex s plane, and are hence accumulation of singularities of TI=1/2(s, t). For TI=3/2(s, t), $s={\left({m}_{N}^{2}-{m}_{\pi }^{2}\right)}^{2}/{m}_{N}^{2}$ is the accumulation point of poles on the second sheet of the complex s plane. The proof is valid up to all orders of chiral expansions.  相似文献   

18.
We have investigated the low-lying energy spectrum and electromagnetic transition strengths in even–even 76Se using the proton–neutron interacting boson model (IBM-2). The theoretical calculation for the energy levels and E2 and M1 transition strengths is in good agreement with the experimental data. Specifically, the excitation energy and E2 transition of ${0}_{2}^{+}$ state, which is intimately associated with shape coexistence, can be accurately reproduced. The analysis on low-lying states and the key structure indicators R1, R2, R3 and R4 and M1 transitions indicates that there is a coexistence between spherical shape and γ-soft shape in 76Se.  相似文献   

19.
Let (P) be the moduli space of irreducible connections of a G-principal bundle P over a closed Riemannian spin manifold M. Let DA be the Dirac operator of M coupled to a connection A of P and f a smooth function on M. We consider a smooth variation A(u) of A with tangent vector ω and denote Tω:= (DA(u)f) (u=0. The coefficients of the asymptotic expansion of trace (Tω · e-t(DAf)2) near t=0 define 1-forms a(k)f, K=0, 1, 2, … on (P). In this paper we calculate aa(0)f, a(1)f, a(2)f and study some of their properties. For instance using the 1-form a(2)f for suitable functions f we obtain a foliation of codimension 5 of the space of G-instantons of S4.  相似文献   

20.
An iterated function system (IFS) over a compact metric space X is defined by a set of contractive maps wi: XX, i = 1,…,N, with associated nonzero probabilities pi > 0, pi = 1. The “parallel” action of the maps defines a unique compact invariant attractor set A X which supports an invariant measure μ and which is balanced with respect to the pi. For linear , the invariance of μ yields a relation between the moments gn = ∫ χn dμ which permits their recursive computation from the initial value g0 = 1. For nonlinear wi, however, the moment relations are incomplete and do not permit a recursive computation. This paper describes two methods of obtaining accurate estimates of the moments when the IFS maps wi are polynomials: (i) application of the necessary Hausdorff conditions on the gi to obtain convergent upper and lower bounds and (ii) a perturbation expansion approach. The methods are applied to some model problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号