首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of hydrostatic pressure and temperature on nonlinear optical rectification(OR), second-harmonic generation(SHG), third-harmonic generation(THG) and the linear,nonlinear, and total optical absorption coefficients(OACs) of a semiparabolic plus semi-inverse squared quantum well(QW) are theoretically investigated. The results show that hydrostatic pressure and temperature have significant effects on the optical properties of semiparabolic plus semi-inverse squared QWs, and that the energy levels and magnitudes of the resonant peaks of OR, SHG, THG, and the total OACs vary according to the shape of the limiting potential, the hydrostatic pressure, and the temperature. It is easily seen that the peak positions of the resonant peaks of OR, SHG, THG, and the total OACs in the semiparabolic plus semi-inverse squared QW show a red shift with increasing hydrostatic pressure, but a blue shift with increasing temperature. Therefore, the magnitude and position of the resonant peaks of OR, SHG, THG,and the total OACs can be adjusted by changing the hydrostatic pressure and the temperature,which promise a new degree of freedom in the tunability of various electro-optical devices.  相似文献   

2.
In this study, simultaneous effects of hydrostatic pressure, temperature and magnetic field on the linear and nonlinear intersubband optical absorption coefficients (OACs) and refractive index changes (RICs) in asymmetrical Gaussian potential quantum wells (QWs) are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy eigenvalues and their corresponding eigenfunctions of the system are calculated with the differential method. Our results show that the position and the magnitude of the resonant peaks of the nonlinear OACs and RICs depend strongly on the hydrostatic pressure, temperature and external magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.  相似文献   

3.
By using the displacement harmonic variant method and the compact density matrix approach, the linear and nonlinear intersubband refractive index changes (RICs) in a semiparabolic quantum well (QW) with applied electric field have been investigated in detail. The simple analytical formulae for the linear and nonlinear RICs in the system were also deduced. The symmetrical parabolic QWs with applied electric fields were taken into account for comparison. Numerical calculations on typical GaAs QWs were performed. The dependence of the linear and nonlinear RICs on the incident optical intensity, the frequencies of the confined potential of the QWs and the strength of the applied electric field were discussed. Results reveal that the RICs in the semiparabolic quantum well system sensitively depend on these factors. The calculation also shows that the semiparabolic QW is a more ideal nonlinear optical system relative to the symmetric parabolic QW systems.  相似文献   

4.
理论研究了法拉第位形下强太赫兹激光场、磁场以及压强作用下半导体中浅杂质态非线性光学性质.利用含时非微扰理论——强太赫兹激光场效应被精确包含在激光缀饰库仑势中——和变分法计算出浅杂质态电子能级和波函数,然后基于紧致密度矩阵方法研究强外场和压强对浅杂质态1s→2pz跃迁的线性、三阶非线性及总的光学吸收系数和折射率变化的影响.研究发现压强和强外场通过激光缀饰库仑势可调控跃迁能和几何因子的增大或减小,所以饱和吸收不但依赖于入射光强和弛豫时间而且还依赖于强外场,在强激光场强度和回旋共振区域附近饱和吸收更容易实现.线性、三阶非线性及总的光学吸收系数和折射率变化的共振峰位置和振幅,在选取合适的外场参数下不但受到强外场的有效调控,而且还受到压强的强烈影响.研究结果为设计强外场调控的新型高效基于杂质电子器件提供了理论支持.  相似文献   

5.
S PANDA  B K PANDA 《Pramana》2012,78(5):827-833
The effect of conduction band nonparabolicity on the linear and nonlinear optical properties such as absorption coefficients, and changes in the refractive index are calculated in the Al0.3Ga0.7As/GaAs heterostructure-based symmetric rectangular quantum well under applied hydrostatic pressure and electric field. The electron envelope functions and energies are calculated in the effective mass equation including the conduction band nonparabolicity. The linear and nonlinear optical properties have been calculated in the density matrix formalism with two-level approximation. The conduction band nonparabolicity shifts the positions of the optical properties and decreases their strength compared to those without this correction. Both the optical properties are enhanced with the applied hydrostatic pressure. While the absorption coefficients are bleached under the combined effect of high pressure and electric field, the bleaching effect is reduced when nonparabolicity is included.  相似文献   

6.
7.
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems.  相似文献   

8.
The nonlinear optical properties of the CdSe/ZnS quantum dot quantum well (QDQW) in the vicinity of a spherical metal nano-particle (MNP) have been described. The third-order nonlinear optical susceptibility induced by the transition between E1 (inside the well) and E2 (outside the well) has been calculated for the third-harmonic generation (THG) under the effective mass approximation and modified by the local field theory. The parameters-dependent third-order nonlinear optical susceptibility for the THG has been specifically explored and the influence of the distance between the QDQW and the MNP on the third-order susceptibility for the THG in the system has been shown and analyzed.  相似文献   

9.
The theoretical study of the combined effects of electric and magnetic fields and hydrostatic pressure on the nonlinear optical absorption and rectification is presented for electrons confined within an asymmetrical GaAs?Ga1-x Alx As double quantum well. The effective mass, parabolic band, and envelope function approaches are used as tools for the investigation. The electric field is taken to be oriented along the growth direction of the heterostructure and the magnetic field is applied parallel to the interfaces of the quantum wells. The pressure-induced mixing between the two lowest conduction bands is considered both in the low and high pressure regimes. According to the results obtained it can be concluded that the nonlinear optical absorption and rectification coefficients depend in a non-trivial way on some internal and external parameters such as the size of the quantum wells, the direction of applied electric field, the magnitude of hydrostatic pressure, the stoichiometry of the wells and barriers, and the intensity of the applied magnetic field.  相似文献   

10.
A theoretical study of the effect of the confining potential on the nonlinear optical properties of two dimensional quantum dots is performed. A three-parameter Woods–Saxon potential is used within the density matrix formalism. The control of confinement by three parameters and an applied electric field gives one quite an advantage in studying their effects on the nonlinear properties. The coefficients investigated include the optical rectification, second and third-harmonic generation and the change in the refractive index. Their dependence on the electric field values, dot size and the energy of the incoming photons is studied extensively.It is shown that the Woods–Saxon potential can be used to model the confinement in quantum dots with considerable success.  相似文献   

11.
The effect of electron-LO-phonon interaction on refractive index changes (RICs) for cylindrical quantum dots (CQDs) with an applied electric field is theoretically investigated. Analytic forms of the linear and third-order nonlinear the RICs are obtained for a cylindrical QD by using compact-density-matrix approach and iterative method, and the numerical results are presented for a GaAs cylinder quantum dot. The results show that the RICs coefficient is greatly enhanced and the peak shift to the aspect of high energy when considering the influence of electron-LO-phonon interaction.  相似文献   

12.
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic Q W have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic Q W systems.  相似文献   

13.
In this paper, the effects of hydrostatic pressure, temperature and intense laser field on the linear and nonlinear optical processes in the conduction band of a square quantum well are numerically investigated in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results are presented for typical square GaAs/AlxGa1?xAs single quantum well system. The nonlinear optical absorption and refractive index changes depending on the hydrostatic pressure and intense laser field are investigated for two different temperature values. The results show that the intense laser field, the hydrostatic pressure and the temperature have a significant effect on the optical characteristics of these structures.  相似文献   

14.
施加电场的半抛物量子阱中的二阶非线性光学极化率   总被引:3,自引:1,他引:2  
张立  谢洪鲸  陈传誉 《光子学报》2003,32(4):437-440
利用量子力学中的紧致密度矩阵方法,研究了施加电场的半抛物量子阱中的二阶非线性光学极化率(光整流系数),得到了此系统的光整流系数的解析表达式.数值计算的结果表明,随着电场强度的增加,光整流系数几乎线性随之增加,而且在同样的电场强度及抛物束缚势频率作用下,半抛物量子阱模型中的光整流系数比抛物量子阱模型中的值大一个数量级,这是由于我们所选模型本身的非对称性以及电场进一步使这种非对称性增强的缘故.  相似文献   

15.
The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.  相似文献   

16.
For square-step quantum wells(SSQWs) and graded-step quantum wells(GSQWs), the nonlinear optical rectification(NOR), second harmonic generation(SHG) and third harmonic generation(THG) coefficients under an intense laser field(ILF) are analyzed. The found results indicate that ILF can ensure a vital influence on the shape and height of the confined potential profile of both SSQWs and GSQWs, and alterations of the dipole moment matrix elements and the energy levels are adhered on the profile of the confined potential. According to the results, the potential profile and height of the GSQWs are affected more significantly by ILF intensity compared to SSQWs. These results indicate that NOR, SHG and THG coefficients of SSQWs and GSQWs may be calibrated in a preferred energy range and the magnitude of the resonance peak(RP) by tuning the ILF parameter. It is feasible to classify blue or red shifts in RP locations of NOR, SHG and THG coefficients by varying the ILF parameter. Our results can be useful in investigating new ways of manipulating the opto-electronic properties of semiconductor QW devices.  相似文献   

17.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   

18.
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.  相似文献   

19.
By using the compact density matrix approach and iterative procedure, a detailed procedure for the calculation of the linear and nonlinear intersubband optical absorption coefficients is given in the electric-field-biased semi-parabolic quantum wells (QWs). The simple analytical formulas for the linear and nonlinear optical absorption coefficients in the systems are also deduced. Numerical result on typical GaAs materials shows that, the linear and nonlinear optical absorption coefficients sensitively depend on the applied electric field and the confined potential frequency of the semiparabolic QW systems as well as the incident optics beam intensity.  相似文献   

20.
Electric field induced exciton binding energy as a function of dot radius in a ZnO/Zn1−xMgxO quantum dot is investigated. The interband emission as a function of dot radius is obtained in the presence of electric field strength. The Stark effect on the exciton as a function of the dot radius is discussed. The effects of strain, including the hydrostatic and the biaxial strain and the internal electric field, induced by spontaneous and piezoelectric polarization are taken into consideration in all the calculations. Numerical calculations are performed using variational procedure within the single band effective mass approximation. Some nonlinear optical properties are investigated for various electric field strengths in a ZnO/Zn1−xMgxO quantum dot taking into account the strain-induced piezoelectric effects. Our results show that the nonlinear optical properties strongly depend on the effects of electric field strength and the geometrical confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号