首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental catalysis has been steadily growing because of the advances in its scientific and engineering aspects,as well as due to the new environmental challenges in the industrial era.The development of new catalysts and materials is essential for new technologies for various environmental applications.Ceramics play important roles in various environmental applications including the identification,monitoring,and quantification of pollutants and their control.Ceramics have important applications as sensors and photocatalysts,and they are extensively used as catalyst carriers and supports.Many ceramics are being explored as catalysts for pollution control applications.Their low cost,thermal and chemical stability,and capability of being tailored make them especially attractive for pollution control applications.Although a wide variety of materials have been developed as catalyst supports,this area is still of interest with new or modified catalyst supports being frequently reported.It is of equal importance to develop new or modified processes for the loading of catalysts on specific supports.Applications like chemical looping combustion(CLC) and other catalytic combustion processes are raising the demands to a new scale.We have been working on the development of both new and modified support materials,including mesoporous materials without structural order for possible applications in CLC and other catalytic reactions.Successful attempts have been made in the modification of conventional γ-Al2O3 and improved synthesis processes for supporting perovskite type catalysts.Our research on environmental catalysis applications of ceramic materials and processes are also briefly discussed.  相似文献   

2.
Rechargeable lithium-oxygen(Li–O_2) batteries have been considered as the most promising candidates for energy storage and conversion devices because of their ultra high energy density. Until now, the critical scientific challenges facing Li–O_2batteries are the absence of advanced electrode architectures and highly efficient electrocatalysts for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER), which seriously hinder the commercialization of this technology. In the last few years, a number of strategies have been devoted to exploring new catalysts with novel structures to enhance the battery performance. Among various of oxygen electrode catalysts, carbon-based materials have triggered tremendous attention as suitable cathode catalysts for Li–O_2batteries due to the reasonable structures and the balance of catalytic activity, durability and cost. In this review, we summarize the recent advances and basic understandings related to the carbon-based oxygen electrode catalytic materials, including nanostructured carbon materials(one-dimensional(1D) carbon nanotubes and carbon nanofibers, 2D graphene nanosheets, 3D hierarchical architectures and their doped structures), and metal/metal oxide-nanocarbon hybrid materials(nanocarbon supporting metal/metal oxide and nanocarbon encapsulating metal/metal oxide). Finally, several key points and research directions of the future design for highly efficient catalysts for practical Li–O_2batteries are proposed based on the fundamental understandings and achievements of this battery field.  相似文献   

3.
Zhang  Yongqi  Ouyang  Bo  Long  Guankui  Tan  Hua  Wang  Zhe  Zhang  Zheng  Gao  Weibo  Rawat  Rajdeep Singh  Fan  Hong Jin 《中国科学:化学(英文版)》2020,63(7):890-896
Tailoring the nanostructure and composition of transition metal nitrides is highly important for their use as potent low-cost electrocatalysts. Cobalt nitride(CoN) exhibits strong catalytic activity for oxygen evolution reaction(OER). However, its poor catalytic efficiency for oxygen reduction reaction(ORR) hinders its application in rechargeable zinc-air batteries(ZABs) as the air cathode. In this work, we deploy the effective strategy of Mn doping to improve both OER and ORR activity of CoN nanowires as the cathode material for ZAB. Theoretical calculation predicts that moderate Mn doping in cobalt nitride results in a downshift of the d-band center and reduces the adsorption energy of reaction intermediates. With ~10 at% Mn dopants, stronger catalysis activities for both OER and ORR are achieved compared to pure CoN nanowires. Subsequently, both aqueous and flexible quasi-solid-state ZABs are constructed using the Mn-doped CoN nanowires array as additive-free air cathode. Both types of devices present large open circuit potential, high power density and long-cycle stability. This work pushes forward the progress in developing cost-effective ZABs.  相似文献   

4.
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.  相似文献   

5.
Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel cells(FCs).Herein,we report a high-performance IMCs by anchoring ordered PtCoNi ternary nanoparticles on the N,Co and Ni co-doped dodecahedral mesoporous carbon(DMC).While the introduced Co and Ni participate in the formation of PtCoNi IMCs,some of them are doped in the mesoporous car...  相似文献   

6.
Binder-free bifunctional electrocatalysts are attractive for rechargeable Zn-air batteries(ZABs) in gridscale energy storage and flexible electronics, but suffering from the sluggish mass transport and inadequate catalytic capability. Herein, we propose a scalable approach of in-situ engineering highly exposed Fe-N4/Cxsites on the N,S-doped porous carbon nanofiber membrane as a binder-free air electrode catalyst for ZABs. ZnS nanospheres are firstly used as integrated structure-direct...  相似文献   

7.
It is of vital importance to accelerate the sluggish oxygen reduction reaction(ORR)process at the cathode with earth-abundant metal-based catalysts for the commercialization of low-temperature polymer electrolyte membrane fuel cells.In consideration of high catalytic activity,long-term stability and low cost of potential ORR electrocatalysts,transition metal species have attracted much interest and transition metal-nitrogen-carbon(M-N/C,M=Fe,Co,Ni,Mn,etc.)catalysts have been widely considered as the most promising non-precious metal catalysts for ORR.Herein,the fundamental understanding of ORR catalytic mechanism and the identification of active centers are briefly introduced,and then different M-N/C catalysts classified by precursors with the strategies for design and optimization are highlighted.The challenges and possible opportunity for future development of high-performance ORR catalysts are finally proposed.  相似文献   

8.
Nowadays,Cu-based materials have attracted extensive attention as electrocatalysts,while the inherent reason of the filling of high anti-bonding state of Cu d band(3 d~(10)4 s~1) makes it difficult to hybridize with O2 p band of oxygen intermediates during the adsorption process of oxygen evolution reaction(OER).To increase the efficiency of Cu-based electrocatalysts,efforts have been made to optimize the electronic structures and to create surface defects and hierarchical nanostructures with more exposed accessible active sites.Herein,we report a facile method for preparing CuO electrocatalysts with hierarchical nanostructures using the Cu-alanine complex as a precursor through room-temperature chemical precipitation and subsequent calcination in air.Investigations of products obtained at different calcination temperatures reveal the relationship between OER activities and the material characteristics such as specific surface areas,crystal growth orientations,and element components.The product obtained at 500℃ exhibits the smallest overpotential of 290 mV in 1.0 mol/L KOH for electrocatalyzing OER.Combining with various characterizations of CuO electrocatalysts after OER activities,the possible catalytic mechanism and the influence factors of their OER performance are also discussed.  相似文献   

9.
《Journal of Energy Chemistry》2017,26(6):1181-1186
Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer and dicyandiamide as the pyrolysis precursor to synthesize nitrogen-doped carbon nanotube(N–CNT) encapsulating cobalt nanoparticles hybrid material. The carbon layers and specific surface area of N–CNT have a critical role to the ORR performance due to the exposed active sites, determined by the mass ratio of the two precursors. The optimum hybrid material exhibits high ORR activity and stability, as well as excellent performance and durability in zinc–air battery.  相似文献   

10.
Oxygen electrode catalysts are important as inter-conversion of O2 and H2O is crucial for energy technologies.However,the sluggish kinetics of oxygen reduction and evolution reactions(ORR and OER)are a hindrance to their scalable production,whereas scarce and costly Pt and Ir/Ru-based catalysts with the highest electrocatalytic activity are commercially unviable.Since good ORR catalysts are not always efficient for OER and vice versa,so bifunctional catalysts on which OER and ORR occurs on the same electrode are very desirable.Alternative catalysts based on heteroatom-doped carbon nanomaterials,though showed good electrocatalytic activity yet their high cost and complex synthesis is not viable for scalable production.To overcome these drawbacks,biomass-derived heteroatom-doped porous carbons have recently emerged as low-cost,earth-abundant,renewable and sustainable environment-friendly materials for bifunctional oxygen catalysts.The tunable morphology,mesoporous structure and high concentration of catalytic active sites of these materials due to heteroatom(N)-doping could further enhance their ORR and OER activity,along with tolerance to methanol crossover and good durability.Thus,biomassderived heteroatom-doped porous carbons with large surface area,rich edge defects,numerous micropores and thin 2 D nanoarchitecture could be suitable as efficient bifunctional oxygen catalysts.In the present article,synthesis,N-doping,ORR/OER mechanism and electrocatalytic performance of biomassderived bifunctional catalysts has been discussed.The selected biomass(chitin,eggs,euonymus japonicas,tobacco,lysine and plant residue)except wood,act as both C and N precursor,resulting in N selfdoping of porous carbons that avoids the use of toxic chemicals,thus making the synthesis a facile and environment-friendly green process.The synthetic strategy could be further optimized to develop future biomass-based N self-doped porous carbons as metal-free high performance bifunctional oxygen catalysts for commercial energy applications.Recent advances and the importance of biomass-based bifunctional oxygen catalysts in metal-air batteries and fuel cells has been highlighted.The material design,perspectives and future directions in this field are also provided.  相似文献   

11.
Layered Li-rich Mn-based oxides are promising cathode materials for Li-ion batteries due to their high capacity and high operation voltage.However,their commercial applications are hindered by irreversible capacity loss in the first charge-discharge process,voltage decay during cycling,inefficient cyclability and rate capability.Many attempts have been performed to solve such issues,including the mechanism study and strategies to improve the electrochemical performance.This article provides a brief review and future perspective on the main challenges of the high-capacity Li-rich Mn-based cathodes for Li-ion batteries.  相似文献   

12.
Sn-doped TiO_2 nanoparticles with high surface area of 125.7 m~2·g~(-1) are synthesized via a simple one-step hydrothermai method and explored as the cathode catalyst support for proton exchange membrane fuel cells.The synthesized support materials are studied by X-ray diffraction analysis,energy dispersive X-ray spectroscopy and transmission electron microscopy.It is found that the conductivity has been greatly improved by the addition of 30 mol%Sn and Pt nanoparticles are well dispersed on Ti_(0.7)Sn_(0.3)O_2 support with an average size of 2.44 run.Electrochemical studies show that the Ti_(0.7)Sn_(0.3)O_2 nanoparticles have excellent electrochemical stability under a high potential compared to Vulcan XC-72.The as-synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 exhibits high and stable electrocatalytic activity for the oxygen reduction reaction.The Pt/Ti_(0.7)Sn_(0.3)O_2 catalyst reserves most of its electrochemically active surface area(ECA),and its half wave potential difference is 11 mV,which is lower than that of Pt/XC-72(36 mV) under 10 h potential hold at 1.4 V vs.NHE.In addition,the ECA degradation of Pt/Ti_(0.7)Sn_(0.3)O_2is 1.9 times lower than commercial Pt/XC-72 under 500 potential cycles between 0.6 V and 1.2 V vs.NHE.Therefore,the as synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 can be considered as a promising alternative cathode,catalyst for proton exchange membrane fuel cells.  相似文献   

13.
Metal-sulfur batteries are recognized as a promising candidate for next generation electrochemical energy storage systems owing to their high theoretical energy density,low cost and environmental friendliness.However,sluggish redox kinetics of sulfur species and the shuttle effect lead to large polarization and severe capacity decay.Numerous approaches from physical barrier,chemical adsorption strategies to electrocatalysts have been tried to solve these issues and pushed the rate and cycle performance of sulfur electrodes to higher levels.Most recently,single-atom catalysts(SACs)with high catalytic efficiency have been introduced into metal-sulfur systems to achieve fast redox kinetics of sulfur conversion.In this review,we systematically summarize the current progress on SACs for sulfur electrodes from aspects of synthesis,characterization and electrochemical performance.Challenges and potential solutions for designing SACs for high-performance sulfur electrodes are discussed.  相似文献   

14.
The increase of atmospheric CO2 concentration has caused many environmental issues. Electrochemical CO2 reduction reaction(CO2RR) has been considered as a promising strategy to mitigate these challenges. The electrocatalysts with a low overpotential, high Faradaic efficiency, and excellent selectivity are of great significance for the CO2RR. Carbon-based materials including metal-free carbon catalysts and metal-based carbon catalysts have shown great p...  相似文献   

15.
Unremitting and intensive researches about efficient non-precious metal electrocatalysts are necessary for large-scale commercial applications of fuel cells, while iron and nitrogen co-doped carbon(Fe-N-C)materials has become one of the most promising electrocatalysts to replace Pt-based noble metal catalysts. However, the traditional Fe-doped ZIF with rhomb dodecahedron morphology limits the exposure of active sites and the utilization of atoms, even affecting the performance of the catalyst. H...  相似文献   

16.
正Water electrolysis is regarded as an environmental friendly and effective technique for large-scale hydrogen (H2) production [1,2].To date, Pt-based electrocatalysts are still the most efficient HER catalysts [3]. However, the prohibitive cost and scarcity of precious metal catalysts have restricted its large-scale applications. Thus,finding an earth-abundant and effective alternative electrocatalysts  相似文献   

17.
Gold(Au) nanostructures(NSs) have been widely employed as cocatalysts to improve the photoactivity of semiconductor materials, while a systematic summary of the engineering approaches of Au NSs to maximize the solar-to-fuel conversion efficiency is still lacking. In this review, the recently developed strategies for elevating the overall photocatalytic performance of Au-based catalysts and the deep physical chemistry mechanisms are highlighted. Firstly, the synthetic approaches of Au NSs are sum...  相似文献   

18.
the types and strategies used to prepare defect electrocatalysts will continue to be studied and developed as new defective materials are generated.4. Characterization of defectsThis review briefly summarizes recent progress in defect electrocatalysts, and the synthesis strategies and characterization techniques for defects are systematically discussed. Although challenges in the characterization of defect structures in the electrocatalytic reaction process remain, the dynamic evolution of defect sites is predicted to be helpful for designing and preparing high-performance electrocatalysts for commercial applications. Furthermore, due to an insufficient understanding of the defect-structureproperty relationships, future possibilities for the reasonable design of defect electrocatalysts to obtain desirable performance are suggested.  相似文献   

19.
Carbon materials were used as supports for Ag catalysts that are prepared using the conventional wet impregnation method, and their catalytic properties for CO selective oxidation in excess hydrogen at temperatures below 483 K were tested. A variety of techniques, e.g. N2 adsorption, XPS, TPD, UV-Vis DRS, TEM and SEM, were used to determine the influence of physical and chemical properties of the carbon on the properties of Ag catalyst. It was found that defects on the carbon surface served as nucleation sites for silver ions, while functional groups on carbon surface induced their reduction to the metallic form. The formation of silver particles on carbon was governed by homogeneous and/or heterogeneous nucleation during the impregnation and subsequent activation processes. The best catalytic performance was obtained with a Ag/carbon black catalyst with a uniform size distribution of silver nanoparticles (about 12 nm), moderate BET surface area (with a mesoporous structure), and a limited amount of carbon-oxygen groups. The research indicates that carbon materials are potentially good supports for silver catalysts for preferential oxidation of CO in excess hydrogen.  相似文献   

20.
Heteroatoms doped Fe-N-C electrocatalysts have been widely acknowledged as one of the most promising candidates to replace Pt-based materials for electrocatalyzing oxygen reduction reaction(ORR).However,the complicated synthesis method and controversial catalytic mechanism represent a substantial impediment as of today.Herein,a very facile strategy to prepare Fe-N/S-C hybrid through pyrolyzing Zn and Fe bimetallic MOFs is rationally designed.The electrocatalytic ORR performance shows a volcanotype curve with the increment of added Fe content.The half-wave potential(E1/2) for ORR at optimized Fe-N/S-C-10%(10%=n(Fe)/(n(Fe)+n(Zn)),n(Fe) and n(Zn) represent the moles of Fe2+ and Zn2+ in the precursors,respectively) shifts significantly to the positive direction of 19.6 mV with respect to that of Pt/C in acidic media,as well as a high 4 e selectivity and methanol tolerance.After 10,000 potential cycles,E1/2 exhibits a small negative shift of-27.5 mV at Fe-N/S-C-10% compared favorably with Pt/C(~141.0 mV).This can be attributed to:(ⅰ) large specific surface area(849 m2/g) and hierarchically porous structure are favorable for the rapid mass transfer and active sites exposure;(ⅱ) the embedded Fecontaining nanoparticles in porous carbon are difficult to be moved and further agglomerated during the electrochemical accelerated aging test,further improving its stability;(ⅲ) there exist small Fecontaining nanoparticles,uniformly doped N and S,abundant Fe-N as efficiently active sites.This work represents a breakthrough in the development of high-efficient non-precious-metal catalysts(NPMCs)to address the current Pt-based electrocatalysts challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号