首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas,the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water.Finally,the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.  相似文献   

2.
设计了一种新型多孔压电分流超材料构型,以单、双孔元胞构型为例,研究了其带隙特性和有限周期振动传递特性,并与未开孔压电分流超材料板进行了对比分析。计算结果表明:与未开孔压电超材料相比,两种构型在低频处的压电局域共振带隙频率更低,带宽变窄,且均会在高频范围内出现额外带隙,随着孔宽δ的增大,额外带隙数量逐渐增多;对应特定的孔宽δ的两种元胞构型均产生带宽大于1kHz的超宽带隙。该构型结合了压电分流超材料和声子晶体的特点,与传统未开孔压电分流超材料相比,具备低频和高频同时抑振的特性。  相似文献   

3.
赵龙  陆泽琦  丁虎  陈立群 《力学学报》2021,53(11):2972-2983
振动隔离和能量采集一体化是一种能够将有害振动隔离并转化为电能收集利用的动力学机制. 本文从局域共振超材料存在低频带隙特性出发, 研究了振动隔离和能量采集双功能超材料的动力学行为. 通过在球型磁腔内放置固接了感应线圈的球摆构成具有能量采集功能的球摆型谐振器, 并将其周期性的放置在基体梁中, 可以将带隙频率范围内的振动聚集在谐振器内, 以实现振动隔离和能量采集双功能. 建立了横向激励下双功能超材料梁的动力学方程, 应用Bloch's定理得到超材料的能带结构, 通过有限元仿真验证了理论模型和研究方法. 研究了不同参数下超材料梁的带隙特性. 进一步将一维拓展到二维, 研究了二维双功能超材料板的振动隔离和能量采集性能. 最后, 设计并建造了振动隔离和能量采集一体化双功能超材料动力学实验平台, 解析、数值和实验结果表明, 在局域共振带隙的频率范围内, 超材料梁主体的振动明显被抑制, 与此同时, 振动被局限在谐振器中, 使采集到的电压达到了最大值. 通过对附加谐振器和没有附加谐振器的能带结构和幅频响应的对比, 发现球摆型谐振器的加入可以在低频范围内形成了一个局域共振带隙, 有效提高了超材料梁在低频处的振动隔离和能量采集性能.   相似文献   

4.
薛潇  张君华  孙莹  权铁汉 《力学学报》2022,54(11):3169-3180
蜂窝结构作为一种多孔材料具有轻质、高强度、高刚度的优点, 兼具隔声降噪、隔热等优良性能, 被广泛应用于交通运输、航空航天等领域. 传统直壁蜂窝在受力后容易出现应力集中的问题, 这将导致蜂窝夹层产生裂纹破坏, 缩短夹层板的使用寿命. 针对此问题本文设计了一种以圆弧曲壁蜂窝作为芯层的蜂窝夹层板, 基于单位载荷法推导了蜂窝芯的等效参数, 建立曲壁蜂窝夹层板的动力学模型, 利用Chebyshev-Ritz方法求解悬臂边界下曲壁蜂窝夹层板的固有频率, 并用有限元方法进行对比验证, 发现前5阶固有频率的误差均在5%以内, 每阶固有频率对应的振型一致. 通过3D打印聚乳酸(PLA)制备了曲壁蜂窝夹层板, 使用万能试验机对PLA拉伸试件进行准静态拉伸测定了打印材料的杨氏模量, 搭建振动试验平台对制备的曲壁蜂窝夹层板进行正弦扫频试验、定频谐波驻留试验和冲击试验. 对比发现3D打印模型振动试验获得的前5阶固有频率与理论模型和有限元模型的计算结果三者一致, 试验发现曲壁蜂窝芯在特定频段内具有一定的抗冲击性能. 研究结果将为曲壁蜂窝在振动和隔振方面的应用提供理论支持.   相似文献   

5.
Optimization of the topology of a plate coupled with an acoustic cavity is presented in an attempt to minimize the fluid–structure interactions at different structural frequencies. A mathematical model is developed to simulate such fluid–structure interactions based on the theory of finite elements. The model is integrated with a topology optimization approach which utilizes the moving asymptotes method. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously attenuating the structural vibration and the sound pressure inside the acoustic domain at several structural frequencies by proper redistribution of the plate material.Experimental verification is carried out by manufacturing topology optimized plates and monitoring their vibration and sound radiation into a rigid acoustic cavity. The measured sound pressure and plate vibration are found to be in good agreement with the predictions of the mathematical model.The presented theoretical and experimental techniques present valuable tools in the design of a wide variety of critical structures which must operate quietly when subjected to fluid loading.  相似文献   

6.
Wave propagation in two-dimensional hierarchical honeycomb structures with twoorder hierarchy is investigated by using the symplectic algorithm. By applying the variational principle to the dual variables, the wave propagation problem is transformed into a two-dimensional symplectic eigenvalue problem. The band gaps and spatial filtering phenomena are examined to find the stop bands and directional stop bands. Special attention is directed to the effects of the relative density and the length ratio on the band gaps and phase constant surfaces. This work provides new opportunities for designing hierarchical honeycomb structures in sound insulation applications.  相似文献   

7.
On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables and the wave propagation problem is then transformed into two-dimensional (2D) symplectic eigenvalue problems, where the extended Wittrick-Williams algorithm is used to ensure that no phase propagation eigenvalues are missed during computation. Three typical cellular structures, square, triangle and hexagon, are introduced to illustrate the unique feature of the symplectic algorithm in higher-frequency calculation, which is due to the conserved properties of the structure-preserving symplectic algorithm. On the basis of the dispersion relations and phase constant surface analysis, the band structure is shown to be insensitive to the material type at lower frequencies, however, much more related at higher frequencies. This paper also demonstrates how the boundary conditions adopted in the finite element modeling process and the structures' configurations affect the band structures. The hexagonal cells are demonstrated to be more efficient for sound insulation at higher frequencies, while the triangular cells are preferred at lower frequencies. No complete band gaps are observed for the square cells with fixed-end boundary conditions. The analysis of phase constant surfaces guides the design of 2D cellular structures where waves at certain frequencies do not propagate in specified directions. The findings from the present study will provide invaluable guidelines for the future application of cellular structures in sound insulation.  相似文献   

8.
The vibro-acoustic responses and sound absorption characteristics of two kinds of periodically stiffened micro-perforated plates are analyzed theoretically. The connected periodical structures of the stiffened plates can be ribs or block-like structures. Based on fundamental acoustic formulas of the micro-perforated plate of Maa and Takahashi, semi-analytical models of the vibrating stiffened plates are developed in this paper. Approaches like the space harmonic method, Fourier transforms and finite element method (FEM) are adopted to investigate both kinds of the stiffened plates. In the present work, the vibro-acoustic responses of micro-perforated stiffened plates in the wavenumber space are expressed as functions of plate displacement amplitudes. After approximate numerical solutions of the amplitudes, the vibration equations and sound absorption coefficients of the two kinds of stiffened plates in the physical space are then derived by employing the Fourier inverse transform. In numerical examples, the effects of some physical parameters, such as the perforation ratio, incident angles and periodical distances etc., on the sound absorption performance are examined. The proposed approaches are also validated by comparing the present results with solutions of Takahashi and previous studies of stiffened plates. Numerical results indicate that the flexural vibration of the plate has a signif- icant effect on the sound absorption coefficient in the water but has little influence in the air.  相似文献   

9.
The narrow bandwidth is a significant limitation of elastic metamaterials for practical engineering applications. In this paper, a broadband elastic metamaterial with single negativity (negative mass density or Young's modulus) is proposed by mimicking lattice systems. It has two stop bands and the bandwidth of the second one is infinite theoretically. The effect of the relevant parameters on band gaps is discussed. A continuum model is proposed and the selection of materials is discussed in detail. It shows that continuum metamaterials can be described accurately by using the lattice model, and the second stopband can be ultra-broad but not infinite. This discrepancy is investigated and a method is provided to calculate the upper limit of the second stopband for a continuum metamaterial. As a verification, the proposed metamaterial is used for wave mitigation over broadband frequency ranges. Moreover, the present method is extended to design 2D anisotropic elastic metamaterials, and a device to control the direction of elastic wave transmission is proposed as an example.  相似文献   

10.
This paper is intended to present a method for the localization and evaluation of damage in plates based on the changes in natural frequencies and mode shapes of the damaged plate using an optimization approach. The colonial competitive algorithm is employed to detect damage (or damages) in plates by optimizing a damage function. The performance of the proposed method is demonstrated by implementing the technique to two examples; a shear wall and a four-fixed supported plate with and without modal data noise including one or a large number of damages. The results confirm the applicability and efficiency of the presented method in detecting damage localization and quantification in the shear walls. Furthermore, the proposed method is implemented to the four-fixed supported plate aimed at demonstrating the high sensitivity of the proposed method in quantitative estimation of damaged plate structures. Finally, the reliability of the presented method is explored through the comparison of the obtained results and those of the other methods. It is concluded that the proposed method can be viewed as a powerful and robust method for structural damage detection in plate structures.  相似文献   

11.
Analytical studies on the vibration and sound radiation characteristics of an asymmetric laminated rectangular plate are carried out in this paper. Theoretical formulations, in which the effects of thermal environments are taken into account, are derived for the vibration and sound radiation based on both first-order shear deformation plate theory and Rayleigh integral. It is found that the natural frequencies, the resonant amplitudes of vibration response and the sound pressure level decrease with the temperature rising. The natural frequencies of asymmetric plates are smaller than those of symmetric plates and the velocity responses of asymmetric plates are larger than those of symmetric plates.  相似文献   

12.
In this study, a new periodic beam model is introduced. This beam consists of the concentrated rigid masses and tapered beam elements with linearly variable width. The theoretical equations are derived by employing the Euler-Bernoulli beam and the Bloch–Floquet theorem and then solved using the generalized differential quadrature rule method to calculate the first two band gaps. The effects of the mass, mass moment of inertia and taper ratio on the widths and central frequencies of the first two band gaps are investigated. Results show that the wide band gaps at low frequency ranges can be obtained by changing the geometrical parameters. This is of interest for different applications of the band gap phenomenon such as broadband piezoelectric energy harvesting. Finally, the finite element simulation (ANSYS software) is used to validate the analytical method and good agreement is found.  相似文献   

13.
王凯  周加喜  蔡昌琦  徐道临  文桂林 《力学学报》2022,54(10):2678-2694
超材料是一类新兴的具有超常物理性质的人造周期/拟周期材料, 能够改变电磁波、声波以及弹性波等在介质中的传播特性. 因在航天、国防以及民用科学等方面的巨大应用潜力, 超材料自被提出后便受到极大的关注并引发研究热潮. 弹性波超材料是超材料的一种, 能够基于弹性波与超材料结构的相互耦合作用实现对弹性波的操控. 带隙是评估弹性波超材料实现弹性波操控的重要工具, 其性质与超材料的材料参数、晶格常数以及局域振子的固有频率相关. 受制于超材料的承载能力、外观尺寸以及局域振子结构等因素, 利用传统超材料开启低频(约100 Hz)弹性波带隙依然存在较大困难. 文章首先简要介绍超材料开启弹性波带隙的基本原理, 然后从低频弹性波超材料基本结构与低频带隙实现方法、低频带隙优化与调控策略、低频带隙潜在应用等三个方面详细总结低频弹性波超材料的研究工作. 其中, 低频带隙超材料的基本结构主要包括布拉格散射型超材料、传统局域共振型超材料以及准零刚度局域共振超材料. 文章通过总结低频弹性波超材料的研究进展, 分析了目前研究中的不足并对未来低频弹性波的研究方向进行了展望.   相似文献   

14.
Nansha Gao  Hong Hou 《力学快报》2021,11(1):100221
A composite absorber made of a polyurethane sponge and multi-layer micro-perforated plates is presented in this study. Results from an acoustic impedance tube test show that the polyurethane sponge can exhibits higher low-frequency sound absorption in front of the micro-perforated plate, while sound absorption at medium and high-frequencies remains low. The physical mechanism behind this is that the micro-perforated plate increases the denpth cavity. If the polyurethane sponge is placed behind the micro-perforated plate, the amplitude of the original absorption peak will remain constant, but the absorption peaks will shift to lower frequencies. The reason for this phenomenon is that porous materials with low flow resistance can be approximately equivalent to fluid, which not only does not affect the resonance absorption coefficient of micro-perforated plate, but also makes the peaks move to low frequency. This study has the potential applications in the sound absorption design of composite structure.  相似文献   

15.
The thrust generated by two heaving plates in tandem is analyzed computationally by solving the Navier–Stokes equations for an incompressible and two-dimensional flow at low Reynolds numbers. We consider with detail two particular sets of configurations of interest in forward flight in a wide range of heaving amplitudes and frequencies: a plunging leading plate with the trailing plate at rest, and the two plates heaving with the same frequency and amplitude, but varying the phase difference. In almost all cases the thrust efficiency of the leading plate is augmented in relation to a single plate heaving with the same frequency and amplitude. In the first configuration with a trailing plate at rest, we characterize the range of nondimensional heaving frequencies and amplitudes of the leading plate for which the stationary trailing plate contributes positively to the global thrust. The maximum global thrust efficiency of this configuration, reached for an advance ratio slightly less than unity and a reduced frequency close to 5, is about the same as the maximum efficiency for an isolated plate, reached for slightly smaller frequencies. But for low frequencies the tandem configuration with the trailing plate at rest is more thrust efficient than the isolated plate. We also characterize the nondimensional frequency and amplitude regions for which the flow becomes chaotic. In the second configuration, the maximum of the total thrust efficiency is reached for a phase lag of 180° (counterstroking), particularly for an advance ratio unity and a reduced frequency 4.4. It is almost the same as the maximum thrust efficiency in the other configuration with the trailing plate at rest and that of a single plate. We discuss the flow structures and the aerodynamic interaction between plates responsible for the optimal thrust configuration in both cases.  相似文献   

16.
A mechanical model with local resonators is proposed as an acoustic metamaterial that exhibits an unusual frequency-dependent effective stiffness. If treated as an equivalent elastic solid, its effective Young's modulus can become unbounded or vanishingly small at two respective frequencies. Moreover, in a certain frequency range, the effective Young's modulus would become negative, resulting in a band gap that coincides with this frequency range. The wave attenuation behavior and mechanism are studied through numerical simulations on the acoustic metamaterial model. The capability of the metamaterial to selectively block or filter unwanted waves is demonstrated by a numerical simulation example.  相似文献   

17.
We prove the duality of solutions for the problem of determining the boundary conditions on two opposite sides of a rectangular plate from the frequency spectrum of its bending vibrations. A method for determining the boundary conditions on two opposite sides of a rectangular plate from nine natural frequencies is obtained. The results of numerical experiments justifying the theoretical conclusions of the paper are presented. Rectangular plates are widely used in various technical fields. They serve as printed circuit boards and header plates, bridging plates, aircraft and ship skin, and parts of various mechanical structures [1–4]. If the plate fixing cannot be inspected visually, then one can use the natural bending vibration frequencies to find faults in the plate fixing. For circular and annular plates, methods for testing the plate fixing were found in [5–7], where it was shown that the type of fixing of a circular or annular plate can be determined uniquely from the natural bending vibration frequencies. The following question arises: Is it possible to determine the type of fixing of a rectangular plate on two opposite sides of the plate from the natural bending vibration frequencies if the other two sides are simply supported? Since the opposite sides of the plate are equivalent to each other, a plate with “rigid restraint—free edge” fixing will sound exactly the same as a plate with “free edge—rigid restraint” fixing. Hence we cannot say that the type of fixing of a rectangular plate on two opposite sides can be uniquely determined from its natural bending vibration frequencies. But it turns out that we can speak of duality in the solution of this problem. Here we observe an analogy with the problem of determining the rigidity coefficients of springs for elastic fixing of a string [8]: the rigidity coefficients of the springs are determined by the natural frequencies uniquely up to permutations of the springs.  相似文献   

18.
圆管型局域共振声子晶体三维构型振动带隙研究   总被引:1,自引:1,他引:0  
采用多重多级子结构方法计算具有一定刚度的圆管型局域共振声子晶体三维构型振动带隙特性。考察包裹方向对带隙特性的影响,并对第一带隙上下边界点的单胞振动形式进行分析。结果表明,两种包裹形式都可以得到较低较宽的第一带隙,并且带隙特性相似,因而其周期结构都可以大幅减弱带隙范围内弹性波的传播。但两种构型带隙上下边界点对应振动形式不同,此外带隙特性还受单胞尺寸的影响。通过给定评价指标得到相关材料参数与带隙特性关系的相图,由此分析包裹层材料属性对带隙特性的影响。  相似文献   

19.
Summary The aim of the paper is to investigate the dynamic response of thin elastic plates having periodic substructure in planes parallel to the plates midplane and interacting with a Winkler foundation. The main goal of the analysis is to describe the effect of substructure size on the plates dynamics. For this purpose, the method proposed in [4, 5] is used. Two special cases are analysed: a plate band with a constant thickness interacting with a periodically inhomogeneous Winkler foundation, and a plate band with a periodically variable thickness interacting with a homogeneous Winkler foundation. The physical correctness conditions of the model are also discussed. Received 14 July 1998; accepted for publication 7 January 1999  相似文献   

20.
针对复合材料夹层板的实际变形特征,基于Zig-Zag变形假定和Mindlin一阶剪切理论,建立了复合材料夹层板自由振动的有限元模型,在该模型中分别对上、下面板和芯体建立了三个独立坐标系,使三部分的转角独立,为具有厚夹芯和软夹芯的复合材料夹层板的动力分析提供了一种更为准确的有限元模型;在此基础上推导了相应的刚度阵和质量阵,并采用子空间迭代法求解。夹层板的固有频率。通过典型考题证明了本模型的有效性。文中最后还通过参数讨论,研究了具有不同长厚比的复合材料夹层板基频的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号