首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
比较不同跑速下膝关节和踝关节屈伸峰值力矩、峰值功率、关节做功、关节冲量矩以及单位距离关节累积冲量矩等指标的变化,旨在探讨不同跑速对下肢关节单次触地负荷和累积负荷特征的影响。选择12名青年男性大学生为受试者,使用VICON红外高速运动捕捉系统、Bertec Fit三维测力跑台同步采集8 km/h、10 km/h、12 km/h和14 km/h共4个速度下跑步膝关节和踝关节的动力学参数,分析膝关节和踝关节屈伸峰值力矩、峰值功率、做功、冲量矩和单位距离关节累积冲量矩等指标。结果表明,支撑期踝关节跖屈峰值力矩、落地缓冲期和离地蹬伸期峰值功率、踝关节做功均随速度的增加显著增加(P<0.05),而膝关节伸膝峰值力矩、峰值功率和做功随着速度的增加均无显著变化(P>0.05);跑步1 km时膝关节和踝关节的累积冲量矩随着速度的增加均显著减小(P<0.05),膝关节和踝关节单步冲量矩随着速度的增加无显著变化(P>0.05)。跑速增加不会影响男性大学生踝关节和膝关节单次触地冲量矩,但会减小跑步者膝关节和踝关节单位距离累积冲量矩;跑速增加,男性大学生踝关节跖屈峰值力矩、峰值功率、关节...  相似文献   

2.
创建19环节三维多刚体模型调查体操自由操落地双侧下肢生物力学对称性。采用运动学(三维运动捕捉、高速摄像)和动力学(三维测力平台)方法采集40 cm和80 cm高度自由落地动作,获得下肢关节角度和地面反作用力,用于验证所创建的三维多刚体模型。然后使用高速摄像系统采集体操团身后空翻一周(后团)落地动作,数字化解析获得运动学数据,驱动三维多刚体模型完成计算机仿真,计算双侧下肢动力学参数。对比实验测量,模型仿真获得的地面反作用力峰值最大差值为3.8%,运动学和动力学复相关系数为0.92~0.97。尽管体操运动员采用双脚同时落地方式,下肢关节运动学角度呈现相似性,但两侧下肢动力学参数,如水平地面反作用力、下肢关节力矩、关节肌肉做功等呈现明显的不对称性。所创建的19环节三维多刚体模型可用于调查确定体操自由操落地下肢生物力学特征;体操运动员下肢动力学特征呈现非对称性;双侧不对称的动力学参数可能是体操落地下肢高损伤率的重要因素。  相似文献   

3.
设计了一种符合人体起立运动的辅助起立机器人,通过牛顿欧拉方程对人体起立过程动力学进行分析与建模,推导机器人辅助起立、上肢辅助起立和肌力不足下肢辅助起立3种情况下,人体力与力矩平衡方程,依据方程在Simulink中建立仿真模型,并使用传感器系统对起立机器人辅助人体起立过程中力与力矩进行测量分析.结果表明:不论采取何种辅助起立方法,辅助起立机器人都可有效辅助起立,特别是对起立初始阶段辅助效果尤为明显.上肢辅助起立时,既可保持身体平衡与稳定,又可补偿起立时所需力与力矩,在接近完全站立时这种效果尤为明显,仿真模型可预测站立过程的关节力与力矩.肌力不足下肢参与辅助起立时,所提供辅助力有限但也起到一定作用.   相似文献   

4.
人体肌肉骨骼系统简称肌骨系统, 包括骨骼、骨骼肌与关节连接, 其力学模型是典型的多柔体系统. 从多体动力学角度研究肌骨系统, 主要关注其在运动过程中的肌肉内力、关节力矩及产生的动力学影响, 属于动力学与生物力学的交叉融合. 肌骨系统的多体动力学模型已被广泛地应用于临床医学、竞技体育、军事训练、人机工程等诸多领域, 其仿真结果可为提高人体运动能力、降低关节载荷与能耗、避免运动损伤、加快康复进程等提供重要计算参考数据. 与此同时, 上述研究亦对肌骨动力学研究提出了许多新挑战. 本文综述了人体肌骨多柔体系统动力学相关研究进展, 包括骨骼肌功能解剖与生物力学建模、神经与肌肉控制理论、肌骨系统动力学问题与求解方法, 以及近年来肌骨多体动力学在步态分析、飞行员抗荷动作、口颌手术规划等领域的典型应用. 与工程领域的机械多体系统相比, 人体肌骨多体系统具有肌肉内力主动性与肌肉控制冗余性两大特征. 现有骨骼肌模型难以同时考虑肌肉的解剖结构、三维几何与肌力产生的生物化学机制. 已有大多数肌骨模型采用静态优化假设消除肌肉冗余性, 忽略了肌肉与肌腱内力平衡及兴奋收缩耦联机制. 此外, 目前仍缺乏实现肌骨模型个性化的无创在体测试手段. 未来, 人体肌骨多体动力学研究将会向更精确、智能、个性化的方向发展, 成为动力学与生物力学交叉的热点研究领域.   相似文献   

5.
设计了一种符合人体起立运动的辅助起立机器人,通过牛顿欧拉方程对人体起立过程动力学进行分析与建模,推导机器人辅助起立、上肢辅助起立和肌力不足下肢辅助起立3种情况下,人体力与力矩平衡方程,依据方程在Simulink中建立仿真模型,并使用传感器系统对起立机器人辅助人体起立过程中力与力矩进行测量分析.结果表明:不论采取何种辅助起立方法,辅助起立机器人都可有效辅助起立,特别是对起立初始阶段辅助效果尤为明显.上肢辅助起立时,既可保持身体平衡与稳定,又可补偿起立时所需力与力矩,在接近完全站立时这种效果尤为明显,仿真模型可预测站立过程的关节力与力矩.肌力不足下肢参与辅助起立时,所提供辅助力有限但也起到一定作用.  相似文献   

6.
机器人在轨移动组装空间结构是建造大型航天器最有潜力的方式之一,但机器人在结构表面作业时两者存在严重的动力学耦合效应,给空间结构的建造带来了新挑战.针对三分支机器人行走在空间柔性结构上形成的耦合动力学问题,提出一种机器人-结构耦合动力学建模与步态优化方法.首先,基于拉格朗日方程和欧拉-伯努利梁模型建立机器人-结构耦合动力学模型,该模型可用于预测机器人在结构表面行走时的耦合动力学响应.然后,基于耦合动力学方程推导出机器人运动与结构振动的关系,以降低结构振动响应为目标开展了机器人行走步态的优化研究.最后,对机器人不同蠕动步态运动方式下的空间结构动力学响应进行了数值仿真,重点分析了机器人以不同步频、不同步长以及不同抬起高度行走移动时对空间结构动力学响应的影响规律.仿真结果表明,空间结构的动力学响应与机器人的运动方式密切相关.因此在设计行走移动组装机器人的运动步态步频时应避免为空间结构固有频率的两倍,同时在保障机器人组装安全稳定的前提下应尽可能减小运动步长和抬起高度.并且通过对机器人运动步态进行优化调整可以有效抑制空间结构的振动.  相似文献   

7.
方五益  郭晛  黎亮  章定国 《力学学报》2020,52(4):965-974
本文探究了铰柔性对机器人动力学响应和动力学控制的影响. 首先, 建立由$n$个柔性铰和$n$个柔性杆组成的空间机器人模型, 运用递推拉格朗日动力学方法, 得到柔性机器人系统的刚柔耦合动力学方程. 在动力学建模过程中, 除了考虑杆件的拉伸变形、弯曲变形、扭转变形以及非线性耦合变形对机器人系统动力学行为的影响, 还考虑了铰的柔性对机器人动力学响应和控制的影响. 其中, 柔性铰模型是基于Spong的柔性关节简化模型, 将柔性铰看成线性扭转弹簧, 不仅考虑了铰阻尼的存在, 还考虑了柔性铰的质量效应. 其次, 编写了空间柔性铰柔性杆机器人仿真程序, 研究铰的刚度系数和阻尼系数对系统动力学响应的影响. 研究表明: 随着柔性铰刚度系数的增大, 柔性机器人的动态响应幅值减小, 振动频率变大. 随着柔性铰阻尼系数的增大, 柔性机器人的动态响应幅值减小, 振动幅值的衰减速度变快. 可通过调节柔性铰的刚度和阻尼来减小柔性铰柔性杆机器人的振动, 因此铰阻尼的研究具有重要工程意义. 最后, 研究了铰柔性在机器人系统动力学控制中的影响. 在刚性铰机械臂和柔性铰机械臂完成相同圆周运动时, 通过逆动力学方法求解得到两种情况下的关节驱动力矩. 研究表明: 引入柔性铰会使控制所需的驱动力矩变小, 对机器人控制的影响显著.   相似文献   

8.
基于Fluent与Simpack的高速列车流固耦合联合仿真   总被引:1,自引:0,他引:1  
基于列车系统动力学和高速列车空气动力学建立了高速列车流固耦合联合仿真计算方法。利用Fluent和Simpack分别计算高速列车气动特性和气动作用下的高速列车动力学性能,通过实时传递气动参数和姿态参数,实现高速列车流固耦合的联合仿真。利用建立的流固耦合方法研究了横风速度为10.7m/s时高速列车以350km/h速度运行时的流固耦合动力学行为。比较了离线仿真和联合仿真两种方法下列车气动力与姿态、安全性和舒适性指标的差异。研究表明,列车一气流的流固耦合效应对头车气动力和姿态的影响显著,头车安全性指标有所恶化。  相似文献   

9.
机器人关节非线性摩擦的准确描述对提高机器人轨迹精度、定位精度及其可靠性等具有重要理论意义和科学价值. 然而, 机器人关节通常包含电机、减速器、驱动器和传感器, 是一个复杂的机电耦合系统, 随服役时间及工况的变化, 机器人关节的摩擦参数也存在显著时变效应, 难以准确描述, 造成轨迹精度下降, 为机器人后期精度维护造成巨大困难. 因此, 本文定量评价了摩擦参数对机器人输出力矩的影响, 提出考虑时变效应的机器人关节非线性摩擦参数反求方法. 首先, 建立机器人关节一般非线性摩擦模型. 设计机器人关节恒速跟踪实验, 通过卡尔曼滤波对实验采集的数据进行处理, 进而建立关节速度和驱动电机电流之间的关系, 完成关节一般非线性摩擦模型建立. 其次, 择取非线性摩擦模型关键参数. 建立包含非线性摩擦的机器人动力学模型, 基于激励轨迹计算各关节力矩, 并对其开展灵敏度分析, 择取对关节力矩灵敏性较高的摩擦参数. 再次, 建立关节输出力矩和摩擦参数一一对应的数据集. 基于实际工况构建摩擦参数取值空间, 采用最优拉丁超立方法对摩擦参数采样, 并将其代入机器人动力学模型计算出相应的力矩, 从而求得关节输出力矩和摩擦参数一一对应的数据集. 最后, 建立反问题神经网络并对其进行训练, 实现非线性摩擦模型关键参数反求, 并进行验证. 研究结果表明关节非线性摩擦的准确描述减小了机器人低速运动换向时摩擦力矩突变对机器人轨迹的影响, 显著提升了机器人轨迹精度.   相似文献   

10.
弹簧负载倒立摆模型是一种典型的双足行走模型,已经成为研究机器人类人行走的基础。本文在此模型的基础上进行了扩展,通过添加刚性躯干、脚质量及采用变长度伸缩腿,充分考虑了躯干及摆动腿动力学对机器人行走步态的影响。首先,利用欧拉–拉格朗日法推导了动力学方程。其次,设计了反馈线性化控制器来跟踪目标轨迹,以及调节摆动腿和躯干的姿态。第三,提出了步态切换策略,通过控制腿部长度和髋关节力矩来实现步态切换,从而改变平均行走速度。最后,通过计算机仿真验证了该方法的有效性。仿真结果表明:该控制策略能够有效地跟踪系统的期望轨迹及实现两种自然步态之间的切换,并形成稳定的极限环,实现机器人的稳定行走。  相似文献   

11.
This paper proposes a novel mechanical design of a lower limb exoskeleton device which prevents the residual stresses due to arthro-kinematics movements of synovial joints and by the way allows effective compensation for dynamic disturbances in osteo-kinematic movements of the wearer. Here, the exoskeleton is only actuated at the knee joints to provide assistive torques, which are required to assist the anatomical joint motion and to increase the transparency of the device. Dynamic simulations of a virtual human equipped with this exoskeleton are used to quantify the disturbances induced by the device during locomotion and to show the benefit of passive mechanisms introduced in the mechanical attaches as well. The authors also demonstrated how the device’s transparency can be improved by providing the motor torques in order to compensate the inertial and gravitational effects. This can be done rely on the knowledge of the locomotion movement phases. A robust gait phase detection method was implemented on the experimental device in order to identify specific gait phases in real time. This method exploits the K-nearest neighbors algorithm to identify the k-closest trained vectors, coupling with a discrete time Markov chain to determine the phases shift probability during the gait cycle. This gait detection algorithm was tested with a percentage of success of more than 95% when the subjects walked with constant and variable stride lengths.  相似文献   

12.
相比于单轴式膝关节,四连杆膝关节具有更好的仿生特性和运动安全性,因而在下肢假肢研究中得到广泛关注. 本研究以一款四连杆膝关节被动假肢为研究对象,主要关注足-地交互作用力以及膝关节单边接触力等强非线性因素对下肢假肢步态的影响. 为此,采用 Kelvin-Voigt 模型和库伦模型描述足-地接触力和摩擦力,并采用 Kelvin-Voigt 模型描述膝关节单边接触力,从而基于第一类拉格朗日方程建立假肢动力学模型. 本研究以步态实验测得的髋关节运动数据为模型的驱动信号,针对假肢的步态特征进行了数值分析. 计算结果显示,当膝关节液压阻尼器的刚度较小时,强非线性作用力会使假肢产生显著的亚谐波响应,进而导致步态周期失谐. 进一步研究发现,提胯行为能够避免步态周期失谐,这也为残疾人行走时的提胯等代偿行为提供了一种新的力学解释. 为了评价假肢步态与健康人实测步态的一致性,本研究进一步定义了步态相关系数并分析了膝关节液压阻尼器刚度、阻尼参数对相关系数的影响. 结果表明,通过合理的刚度、阻尼参数设计,两者步态的相关系数可达到 0.9 以上,这为四连杆膝关节被动假肢进一步优化提供了理论支撑.  相似文献   

13.
四连杆膝关节假肢的动力学建模与分析   总被引:1,自引:0,他引:1  
相比于单轴式膝关节,四连杆膝关节具有更好的仿生特性和运动安全性,因而在下肢假肢研究中得到广泛关注. 本研究以一款四连杆膝关节被动假肢为研究对象,主要关注足-地交互作用力以及膝关节单边接触力等强非线性因素对下肢假肢步态的影响. 为此,采用 Kelvin-Voigt 模型和库伦模型描述足-地接触力和摩擦力,并采用 Kelvin-Voigt 模型描述膝关节单边接触力,从而基于第一类拉格朗日方程建立假肢动力学模型. 本研究以步态实验测得的髋关节运动数据为模型的驱动信号,针对假肢的步态特征进行了数值分析. 计算结果显示,当膝关节液压阻尼器的刚度较小时,强非线性作用力会使假肢产生显著的亚谐波响应,进而导致步态周期失谐. 进一步研究发现,提胯行为能够避免步态周期失谐,这也为残疾人行走时的提胯等代偿行为提供了一种新的力学解释. 为了评价假肢步态与健康人实测步态的一致性,本研究进一步定义了步态相关系数并分析了膝关节液压阻尼器刚度、阻尼参数对相关系数的影响. 结果表明,通过合理的刚度、阻尼参数设计,两者步态的相关系数可达到 0.9 以上,这为四连杆膝关节被动假肢进一步优化提供了理论支撑.   相似文献   

14.
The single-inverted pendulum (SIP) model is still the paradigm describing dynamics and control of quiet human stance in the sagittal plane. We used two methods to verify this paradigm. First, in an experimental approach we acquired kinematic data of both legs of ten subjects at high spatial resolution while quietly standing on two force platforms. We calculated all leg joint angles, the belonging joint torques using inverse dynamics and estimates of joint stiffnesses. Some linear correlations and regressions of both local (joint) and global (COM, COP: centre of mass respectively pressure) variables predicted by the SIP model were investigated. All three verification criteria applied to mean values extracted from experimental data revealed that the SIP is not a valid model for quiet human stance. As a second method, we used computer synthesis to demonstrate that a double-inverted pendulum (DIP) model enters a stable attractor when just the “hip” joint torque is regulated, whereas no torque is applied to the “ankle” joint. Here, angle and torque fluctuations are necessary because such a DIP strategy is of inevitable dynamic character. The two predicted eigenfrequencies of this regulated DIP model approximate the upper and lower limits of the main part of measured power spectra of quiet human stance. We suggest this dynamic necessity to be representative of the biological constraints under which a mechanically unstable inverted multi-segment chain must be stabilised.  相似文献   

15.
Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.  相似文献   

16.
Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.  相似文献   

17.
Exposure to unaccustomed eccentric exercise causes muscle damage. Popping sarcomere theory [1] has been proposed and assumed that eccentric contraction-induced muscle damage predominantly occurs at muscle length on the descending limb of the force-length relationship. This study investigated changes in the mechanical properties following maximum effort eccentric exercise at systematically different muscle lengths for the human ankle dorsiflexors. The results of this study showed that the eccentric exercise of the ankle dorsiflexors decreased the peak torque, shifted the optimal joint angle towards longer muscle length without changes in the level of muscle activation. However, no difference in the shift of the optimal ankle joint angle was observed between the groups that performed eccentric exercise at long muscle length (ECC_L) and at short muscle length (ECC_S). In conclusion, the muscle length at which the eccentric exercise was performed did not produce differential effects on the neuro-mechanical properties of in-vivo human ankle dorsiflexors, and thus the popping sarcomere theory might not be the sole mechanism to account for the eccentric contraction-induced optimal muscle length change.  相似文献   

18.
Input torque is the main power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kine-matic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are intro-duced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot param-eters are classified into three categories, i.e., strongly sensi-tive, sensitive and almost insensitive parameters.  相似文献   

19.
Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built Published in Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 134–142, July 2008.  相似文献   

20.
This paper investigates the effect of postural disturbances and sensorimotor deficits on the robustness of the upright posture (UP) for a human body model balancing on a balance board (BB). The robustness is investigated by computing the gradient field along the basin of attraction (BoA) of an asymptotically stable equilibrium point. The human model is modeled as a double-inverted pendulum (hip and ankle joints). The human-BB system is assumed actuated by torques at the hip, BB hinge, and ankle joints. Postural disturbances induce an initial joint angle velocity either at the ankle or at the hip joint. Moreover, either proprioceptive or visual and vestibular deficits are considered in the human-BB model. The nonlinear dynamic equation of motion of the human-BB system is numerically solved to obtain the BB, ankle, and hip joint angle position and velocity profiles. The BoA of the human-BB UP equilibrium is built as the set of initial conditions whose resulting time-series profiles converge to the equilibrium. It was shown that UP is more robust to disturbances that induce hip joint initial angle velocity. That is probably due to the fact that disturbances that induce ankle joint initial velocity affect the whole body, while disturbances that induce hip joint angle initial velocity only affect the trunk. Whenever visual and vestibular deficits are considered, the UP is more robust if proprioceptive gain and BB stiffness are small. Contrarily, whenever proprioceptive deficits are considered, the UP is more robust if visual and vestibular gain and BB stiffness are large. The method proposed here (the BoA and the gradients) can be used to systemically provide understanding about the robustness of the human-BB UP to external disturbances, which may help to identify people with a higher risk of fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号