首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fully linear-time approximation algorithm for grammar-based compression   总被引:1,自引:0,他引:1  
A linear-time approximation algorithm for the grammar-based compression is presented. This is an optimization problem to minimize the size of a context-free grammar deriving a given string. For each string of length n, the algorithm guarantees approximation ratio without suffix tree construction.  相似文献   

2.
3.
We establish several geometric extensions of the Lipton-Tarjan separator theorem for planar graphs. For instance, we show that any collection C of Jordan curves in the plane with a total of m crossings has a partition into three parts C=SC1C2 such that , , and no element of C1 has a point in common with any element of C2. These results are used to obtain various properties of intersection patterns of geometric objects in the plane. In particular, we prove that if a graph G can be obtained as the intersection graph of n convex sets in the plane and it contains no complete bipartite graph Kt,t as a subgraph, then the number of edges of G cannot exceed ctn, for a suitable constant ct.  相似文献   

4.
设G=(V,E)为简单图, G的每个至少有两个顶点的极大完全子图称为G的一个团. 图的团染色定义为给图的点进行染色使得图中没有单一颜色的团, 也就是说每一个团具有至少2种颜色.图的一个k-团染色 是指用k 种颜色给图的点着色使得图G 的每一个团至少有2种颜色.图G的团染色数\chi_{C}(G)是指最小的数k使得图G 存在k-团染色. 首先指出了完全图的线图的团染色数与推广的Ramsey 数之间的一个联系, 其次对于最大度不超过7的线图给出了一个最优团染色的多项式时间算法.  相似文献   

5.
In this paper we discuss the problem of finding edge-disjoint paths in a planar, undirected graph such that each path connects two specified vertices on the boundary of the graph. We will focus on the “classical” case where an instance additionally fulfills the so-calledevenness-condition. The fastest algorithm for this problem known from the literature requiresO (n 5/3(loglogn)1/3) time, wheren denotes the number of vertices. In this paper now, we introduce a new approach to this problem, which results in anO(n) algorithm. The proof of correctness immediately yields an alternative proof of the Theorem of Okamura and Seymour, which states a necessary and sufficient condition for solvability.  相似文献   

6.
Drawings of planar graphs with few slopes and segments   总被引:1,自引:0,他引:1  
We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). In a companion paper, drawings of non-planar graphs with few slopes are also considered.  相似文献   

7.
8.
9.
On stable cutsets in claw-free graphs and planar graphs   总被引:4,自引:0,他引:4  
A stable cutset in a connected graph is a stable set whose deletion disconnects the graph. Let K4 and K1,3 (claw) denote the complete (bipartite) graph on 4 and 1+3 vertices. It is NP-complete to decide whether a line graph (hence a claw-free graph) with maximum degree five or a K4-free graph admits a stable cutset. Here we describe algorithms deciding in polynomial time whether a claw-free graph with maximum degree at most four or whether a (claw, K4)-free graph admits a stable cutset. As a by-product we obtain that the stable cutset problem is polynomially solvable for claw-free planar graphs, and also for planar line graphs.Thus, the computational complexity of the stable cutset problem is completely determined for claw-free graphs with respect to degree constraint, and for claw-free planar graphs. Moreover, we prove that the stable cutset problem remains NP-complete for K4-free planar graphs with maximum degree five.  相似文献   

10.
《Discrete Mathematics》2019,342(2):339-343
A strong edge-coloring of a graph G=(V,E) is a partition of its edge set E into induced matchings. Let G be a connected planar graph with girth k26 and maximum degree Δ. We show that either G is isomorphic to a subgraph of a very special Δ-regular graph with girth k, or G has a strong edge-coloring using at most 2Δ+12(Δ2)k colors.  相似文献   

11.
The longest path problem is a well-known NP-hard problem and so far it has been solved polynomially only for a few classes of graphs. In this paper, we give a linear-time algorithm for finding a longest path between any two given vertices in a rectangular grid graph.  相似文献   

12.
13.
F.M. Dong  K.M. Koh 《Discrete Mathematics》2008,308(11):2285-2287
It is well known that (-∞,0) and (0,1) are two maximal zero-free intervals for all chromatic polynomials. Jackson [A zero-free interval for chromatic polynomials of graphs, Combin. Probab. Comput. 2 (1993), 325-336] discovered that is another maximal zero-free interval for all chromatic polynomials. In this note, we show that is actually a maximal zero-free interval for the chromatic polynomials of bipartite planar graphs.  相似文献   

14.
A coloring of a graph G is injective if its restriction to the neighborhood of any vertex is injective. The injective chromatic numberχi(G) of a graph G is the least k such that there is an injective k-coloring. In this paper we prove that if G is a planar graph with girth g and maximum degree Δ, then (1) χi(G)=Δ if either g≥20 and Δ≥3, or g≥7 and Δ≥71; (2) χi(G)≤Δ+1 if g≥11; (3) χi(G)≤Δ+2 if g≥8.  相似文献   

15.
We prove that each simple planar graph G whose all faces are quadrilaterals can be decomposed into two disjoint trees Tr and Tb such that V(Tr) = V(Gu) and V(Tb) = V(Gv) for any two non-adjacent vertices u and v of G.  相似文献   

16.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

17.
In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below, we show that there is a planar graph whose adjacency poset has dimension 5. We then show that the dimension of the adjacency poset of an outerplanar graph is at most 5. From below, we show that there is an outerplanar graph whose adjacency poset has dimension 4. We also show that the dimension of the adjacency poset of a planar bipartite graph is at most 4. This result is best possible. More generally, the dimension of the adjacency poset of a graph is bounded as a function of its genus and so is the dimension of the vertex-face poset of such a graph.  相似文献   

18.
19.
《Discrete Mathematics》2022,345(10):113002
We prove that planar graphs of maximum degree 3 and of girth at least 7 are 3-edge-colorable, extending the previous result for girth at least 8 by Kronk, Radlowski, and Franen from 1974.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号