共查询到19条相似文献,搜索用时 78 毫秒
1.
研究了Sn气体扩散电极(SGDE)上电化学还原CO2制甲酸(ERCF)性能的稳定性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量色散谱(EDX)和活性表面积测试等技术手段 分别表征SGDE在电化学还原CO2制甲酸过程前后的物相结构、表面形貌、元素组成和活性表面积。 采用生成甲酸的法拉第效率(fHCOOH)评价SGDE上电化学还原CO2制甲酸的性能。 结果显示,fHCOOH随电解时间的延长急剧地降低,电解时间12 h的fHCOOH((36.6±1.6)%)比电解时间0.5 h时的fHCOOH((78.5±0.1)%)降低了53%。 SGDE在12 h电还原反应后,表面沉积了微量Fe,而且Sn含量(质量分数)减少了66%,活性表面积降低了41%。 进一步的研究发现,沉积的微量Fe对电化学还原CO2制甲酸过程基本没有影响,Sn含量和活性表面积的降低可能是SGDE上电化学还原CO2制甲酸性能降低的主要原因。 相似文献
2.
电催化还原二氧化碳制备甲酸是备受关注的热点问题。而电极材料是决定还原效率的重要因素。本文通过电沉积方法在泡沫铜上直接制备纳米结构硫化亚铜薄膜,并采用扫描电镜(SEM)、X射线衍射(XRD)对其结构性能进行了系统研究。以硫化亚铜作为阴极电催化材料、0.5 mol·L-1 1-丁基-3-甲基咪唑四氟硼酸盐的乙腈溶液为电解液,在该体系中可高效催化转化二氧化碳为甲酸。结果表明,这一电解体系可有效实现电化学反应,甲酸的法拉第效率(FEHCOOH)可以达到85%,同时甲酸还原电流密度可达到5.3 mA·cm-2。 相似文献
3.
4.
单原子催化剂在光催化二氧化碳还原中的研究进展 总被引:1,自引:0,他引:1
通过光催化技术将二氧化碳转化成增值的含碳化学品或燃料是解决能源危机和温室效应的一种可持续性方法. 开发高效、 廉价及高稳定性的光催化剂是提高光催化二氧化碳还原(CO2RR)效率所面临的一大挑战. 单原子催化剂由于具有原子利用率高及电子环境可调等特性而在催化领域被广泛研究. 在光催化二氧化碳还原中, 金属单原子的加入不仅可调节光催化剂的能带结构及吸光性能等物理性质, 还可以有效提高其光生电荷转移效率, 并为研究光催化反应机理提供理想的平台. 近年来, 单原子光催化剂在二氧化碳还原领域的研究发展迅速. 本文综合评述了单原子催化剂在光还原二氧化碳反应中的研究进展, 介绍了不同载体的单原子催化剂的典型研究成果, 并展望了未来的研究趋势. 相似文献
5.
6.
The CO2 level in the atmosphere has been increasing since the industrial revolution owing to anthropogenic activities. The increased CO2 level has led to global warming and also has detrimental effects on human beings. Reducing the CO2 level in the atmosphere is urgent for balancing the carbon cycle. In this regard, reduction in CO2 emission and CO2 storage and usage are the main strategies. Among these, CO2 usage has been extensively explored, because it can reduce the CO2 level and simultaneously provide opportunities for the development in catalysts and industries to convert CO2 as a carbon source for preparing valuable products. However, transformation of CO2 to other chemicals is challenging owing to its thermodynamic and kinetic stabilities. Among the CO2 utilization techniques, electrochemical CO2 reduction (ECR) is a promising alternative because it is generally conducted under ambient conditions, and water is used as the economical hydrogen source. Moreover, ECR offers a potential route to store electrical energy from renewable sources in the form of chemical energy, through generation of CO2 reduction products. To improve the energy efficiency and viability of ECR, it is important to decrease the operational overpotential and maintain large current densities and high product selectivities; the development of efficient electrocatalysts is a critical aspect in this regard. To date, many kinds of materials have been designed and studied for application in ECR. Among these materials, metal oxide-based materials exhibit excellent performance as electrocatalysts for ECR and are attracting increasing attention in recent years. Investigation of the mechanism of reactions that involve metallic electrocatalysts has revealed the function of trace amount of oxidized metal species—it has been suggested that the presence of metal oxides and metal-oxygen bonds facilitates the activation of CO2 and the subsequent formation and stabilization of the reaction intermediates, thereby resulting in high efficiency and selectivity of the ECR. Although the stability of metal oxides is a concern as they are prone to reduction under a cathodic potential, the catalytic performance of metal oxide-based catalysts can be maintained through careful designing of the morphology and structure of the materials. In addition, introducing other metal species to metal oxides and fabricating composites of metal oxides and other materials are effective strategies to achieve enhanced performance in ECR. In this review, we summarize the recent progress in the use of metal oxide-based materials as electrocatalysts and their application in ECR. The critical role, stability, and structure-performance relationship of the metal oxide-based materials for ECR are highlighted in the discussion. In the final part, we propose the future prospects for the development of metal oxide-based electrocatalysts for ECR. 相似文献
7.
近年来, 二氧化碳过量排放所引发的全球变暖等气候问题引起了全世界的广泛关注, 碳减排已成为人类社会可持续发展面临的共同挑战. 利用电化学方法将二氧化碳转化为高附加值化学品是实现碳减排和二氧化碳高附加值利用的理想途径之一, 但仍面临能耗高、 二氧化碳转化率低、 产物选择性差和难分离等问题. 本文以电还原二氧化碳制草酸为例, 从反应机理、 催化剂、 电解液、 催化电极及反应器等方面介绍该反应的研究进展, 对当前二氧化碳电还原制草酸存在的关键问题进行了分析, 并对其未来研究方向进行了展望. 相似文献
8.
9.
10.
利用电催化技术和阴极区的还原反应将CO2转化为高能化学品是解决温室效应和实现人工碳循环的有效途径。与其它金属催化剂相比,Cu基催化剂因其能生成多碳产物而备受关注,但其缺点是对产物的选择性差。因此,近年来,研究者致力于探究Cu基催化剂在反应过程中的C-C偶联机制及影响因素,并对Cu基催化剂进行针对性的结构设计和实验合成。本文总结了Cu基电极上电催化CO2还原反应(CO2RR)的基本原理,分析了影响电催化CO2RR的关键因素(电催化反应器、pH值、压力和温度、CO2的流速与浓度),综述了针对Cu基催化剂改性的相关策略(合金化、纳米结构改性、杂原子掺杂、亲/疏水性、单原子催化剂)的研究进展,最后,展望了电催化CO2RR的Cu基催化剂领域的机遇与挑战,以期为今后开展相关研究提供有益参考。 相似文献
11.
Catalysts are required to ensure electrochemical reduction of CO2 to fuels proceeds at industrially acceptable rates and yields. As such, highly active and selective catalysts must be developed. Herein, a density functional theory study of p-block element and noble metal doped graphene-based single-atom catalysts in two defect sites for the electrochemical reduction of CO2 to CO and HCOOH is systematically undertaken. It is found that on all of the systems considered, the thermodynamic product is HCOOH. Pb/C3, Pb/N4 and Sn/C3 are identified as having the lowest overpotential for HCOOH production while Al/C3, Al/N4, Au/C3 and Ga/C3 are identified as having the potential to form higher order products due to the strength of binding of adsorbed HCOOH. 相似文献
12.
温室气体CO2的大量排放给全球气候造成潜在威胁,电化学还原CO2为有用的化工产品作为一种人为的碳循环的方式,拓展了新的利用CO2的可能性,并且是一种很有前景的显著改善环境、促进可持续发展的方法。然而,在转化CO2为有价值的产品过程中,最大的挑战是抑制析氢副反应的同时达不到高效率、高选择性。铜因其在电催化还原CO2过程中优异的催化性能而得到广泛关注。本文重点介绍了近年来电催化还原CO2的发展以及电化学转化CO2的优缺点,介绍了CO2RR的热力学与动力学研究并概述了Cu电极、Cu MOFs材料电极以及通过氧化、合金化、纳米化和表面修饰等方法修饰的铜电极的进展,但是电催化还原CO2的反应机理尚不太确定。最后,讨论了未来铜基电极催化剂高效率地选择性转化CO2会面临的挑战和可能研究的方向。 相似文献
13.
14.
15.
16.
17.
Industrial revolution has led to increased combustion of fossil fuels. Consequently, large amounts of CO2 are emitted to the atmosphere, throwing the carbon cycle out of balance. Currently, the most effective method to reduce the CO2 concentration is direct CO2 capture from the atmosphere and pumping of the captured CO2 deep underground or into the mid-ocean. The transformation of CO2 into high-value chemicals is an attractive yet challenging task. In recent years, there has been much interest in the development of CO2 utilization technologies based on electrochemical CO2 reduction, photochemical CO2 reduction, and thermal CO2 reduction, and CO2 valorization has emerged as a hot research topic. In electrochemical CO2 reduction, the cathodic reaction is the reduction of CO2 to value-added chemicals. The anodic reaction should be the oxygen evolution reaction, and water is the only renewable and scalable source of electrons and protons in this reaction. There is a plethora of research on the use of various metals to catalyze this reaction. Among these, Cu-based materials have been demonstrated to show unique catalytic activity and stability for the electrochemical conversion of CO2 to valuable fuels and chemicals. Moreover, the solar-driven conversion of CO2 into value-added chemical fuels has attracted great attention, and much effort is being devoted to develop novel catalysts for the photoreduction of CO2, especially by mimicking the natural photosynthetic process. The key step in the photocatalytic process is the efficient generation of electron-hole pairs and separation of these charge carriers. The efficient separation of photoinduced charge carriers plays a crucial role in the final catalytic activity. Compared with CO2 reduction via electrocatalysis and photocatalysis, thermal reduction is more attractive because of its potential large-scale application in the industry. Heterogeneous nanomaterials show excellent activity in the electrocatalytic, photocatalytic, and thermal catalytic conversion of CO2. However, nanostructured materials have drawbacks on the investigation of the intrinsic activity of the active sites. In recent years, single-site catalysts have become popular because they allow for maximum utilization of the metal centers, show specific catalytic performance, and facilitate easy elucidation of the catalytic mechanism at the molecular level. Accordingly, numerous single-site catalysts were developed for CO2 reduction to produce value-added chemicals such as CO, CH4, CH3OH, formate, and C2+ products. Value-added chemicals have also been synthesized with the aid of amines and epoxides. This review summarizes recent state-of-the-art single-site catalysts and their application as heterogeneous catalysts for the electroreduction, photoreduction, and thermal reduction of CO2. In the discussion, we will highlight the structure-activity relationships for the catalytic conversion of CO2 with single-site catalysts. 相似文献
18.
19.
It has been shown it is possible to reduce carbon dioxide electrochemically using benzil as a homogeneous electron transfer
agent. It was found that oxalic acid is the basic product formed during the electrochemical reduction of carbon dioxide.
__________
Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 1, pp. 29–32, January–February, 2006. 相似文献