首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Ruppeiner geometry has been successfully applied in the study of the black hole microstructure by combining with the small–large black hole phase transition, and the potential interactions among the molecular-like constituent degrees of freedom are uncovered. In this paper, we will extend the study to the triple point, where three black hole phases coexist acting as a typical feature of black hole systems quite different from the small–large black hole phase transition. For the six-dimensional charged Gauss–Bonnet anti-de Sitter black hole, we thoroughly investigate the swallow tail behaviors of the Gibbs free energy and the equal area laws. After obtaining the black hole triple point in a complete parameter space, we exhibit its phase structures both in the pressure–temperature and temperature–horizon radius diagrams. Quite different from the liquid–vapor phase transition, a double peak behavior is present in the temperature–horizon radius phase diagram. Then we construct the Ruppeiner geometry and calculate the corresponding normalized curvature scalar. Near the triple point, we observe multiple negatively divergent behaviors. Positive curvature scalar is observed for the small black hole with high temperature, which indicates that the repulsive interaction dominates among the microstructure. Furthermore, we consider the variation of the curvature scalar along the coexisting intermediate and large black hole curves. Combining with the observation for different fluids, the result suggests that this black hole system behaves more like the argon or methane. Our study provides a first and preliminary step towards understanding black hole microstructure near the triple point, as well as uncovering the particular properties of the Gauss–Bonnet gravity.  相似文献   

2.
We study the massless scalar quasinormal frequencies of an asymptotically flat static and spherically symmetric black hole with a nonzero magnetic charge in four-dimensional extended scalar-tensor-Gauss–Bonnet theory. The results show that the real part of the quasinormal frequency becomes larger and the imaginary part becomes smaller with increasing the magnetic charge or the angular harmonic index. The existence of magnetic charges will reduce the damping of scalar perturbation, but increase the frequency. We also study the absorption cross-section of the scalar field in this black hole. We find that its curve will become lower as the magnetic charge increases, i.e. the magnetic charge will weaken the absorption capacity of the black hole. Meanwhile, the high-frequency limit of the total absorption cross-section is just the area of black hole shadow.  相似文献   

3.
We discuss black hole solutions of Einstein-Λ gravity in the presence of nonlinear electrodynamics in d S spacetime. Considering the correlation of the thermodynamic quantities respectively corresponding to the black hole horizon and cosmological horizon of dS spacetime and taking the region between the two horizons as a thermodynamic system, we derive effective thermodynamic quantities of the system according to the first law of thermodynamics, and investigate the thermodynamic properties of the system under the influence of nonlinearity parameter α. It is shown that nonlinearity parameter α influences the position of the black hole horizon and the critical state of the system, and along with electric charge has an effect on the phase structure of the system,which is obvious, especially as the effective temperature is below the critical temperature. The critical phase transition is proved to be second-order equilibrium phase transition by using the Gibbs free energy criterion and Ehrenfest equations.  相似文献   

4.
In order to clearly understand the gravitational theory through the thermal properties of the black hole, it is important to further investigate the first-order phase transition of black holes. In this paper, we adopt different conjugate variables (\begin{document}$ P\sim V $\end{document}, \begin{document}$ T\sim S $\end{document}, \begin{document}$ C_1\sim c_1 $\end{document}, and \begin{document}$ C_2\sim c_2 $\end{document}) and apply Maxwell's equal-area law to study the phase equilibrium of a topological black hole in massive gravity. The condition and latent heat of phase transition are displayed as well as the coexistent curve of \begin{document}$ P-T $\end{document}. The result shows that the phase transition of this system is the high/low electric potentials one, not only the large/small black holes one. We also analyze the effect of the model's parameters on phase transition. Furthermore we introduce a new order parameter to probe the microstructure of this system. This work will provide the theoretical basis to study the phase structure of topological black holes in massive gravity and to further explore the gravitational theory.  相似文献   

5.
The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties,but the black hole solutions in this theory are still not fully understood.In the paper,we concentrate on studying the charged black holes in such a theory.Adding the electromagnetic field part to the effective action,we show how the black hole solutions around the Reissner-Nordstrom metric can be solved perturbatively and iteratively.We further calculate the corresponding temperature,entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.  相似文献   

6.
Shuxuan Ying 《中国物理C(英文版)》2020,44(12):125101-125101-9
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号