共查询到20条相似文献,搜索用时 62 毫秒
1.
在一些光学精密仪器的应用场合中,不仅需要脉冲电源在时间上能够提供精确的控制,而且需要具有高稳定度的输出,以提高光电系统的探测性能;运用基于高压开关的两级式方法,采用单级高功率MOSFET开关结合具有高稳定输出的直流电源的结构,设计了输出辐度可达2kV的高稳定负脉冲电源;测试结果表明,在输出脉冲宽度为8 μs时,脉冲前沿约为48 ns,系统延迟时间约为140 ns,负脉冲超调参数约为1%。该系统具有结构简单、可靠性高、高稳定性输出等优点,可以为特定的光电器件提供优质的控制方式。 相似文献
2.
采用感应同步加速原理,能在MHz重复频率下连续运行的双极性脉冲感应加速单元可以替代传统的射频加速单元应用于环形加速器中。针对MHz重频双极性脉冲功率源设计、感应腔负载特性等关键技术开展了实验研究,研制了一套MHz重频双极性脉冲感应加速单元。相比于日本高能加速器研究机构(KEK)研制的感应同步加速单元,该加速单元对电路结构进行了优化, 在加速脉冲具备相同顶降的前提下,将加速腔纵向尺寸缩小了5倍以上,可有效改善现有脉冲感应加速单元在加速电压调节方面的局限性,提高了功率系统的稳定性,减小了组元连续运行时的功率损耗,更加适应各类环形加速器对重频脉冲感应加速组元的应用需求。 相似文献
3.
早期国内外研究的窄脉冲源重频低(几十至几百赫兹)、峰值电压小;近10年来发展起来的全固态高重频高压窄脉冲源,电压大(可达到3kV)、峰值功率高、重频可达10^5赫兹量级。 相似文献
4.
为了满足脉冲电场消融的应用需求,解决单极性脉冲电场分布不均匀的问题,研制了一台基于半桥结构的主电路、具有纳秒级前沿的高重复频率双极性亚微秒高压脉冲电源。该脉冲电源由FPGA提供控制信号,经过驱动芯片放大控制信号后,利用光耦隔离驱动多个SiC MOSFET。驱动电路所需元器件较少,信号控制时序简单,可提供负压偏置,使开关管可靠关断,提高了电路的抗电磁干扰能力,使电源能稳定运行。通过电阻负载实验,对比分析了不同栅极电阻对驱动电压的影响,驱动电压上升沿时间越短对应的双极性高压脉冲前沿越快。实验结果表明:所设计的高频双极性脉冲电源在100Ω纯阻性负载上能够稳定产生重复频率双极性纳秒脉冲,输出电压0~±4 kV可调,脉宽0.2~1.0μs可调,正负脉冲相间延时0~1 ms可调,上升沿和下降沿60~150 ns之间。该双极性脉冲电源电路设计结构紧凑,能满足应用的参数需求。 相似文献
5.
针对高功率脉冲电源集成系统连续放电的需求,研制了一种用于该系统的重频水冷电感。水冷电感在系统中既调节电源的电流波形,又能起到隔离作用。该重频水冷电感耐压高、通流大、充电间隔周期6 s,可连续工作10 次放电。针对连续放电的需求,通过去离子循环水对重频电感进行降温。现以单模块能量334 kJ、电感量30 μH、通流 100 kA为例进行设计分析,建立重频水冷电感温度场仿真模型,通过ANSYS仿真软件对该电感内部温度瞬态特性进行分析。结果表明:水冷电感通过去离子水冷却效果好,电感每次工作后温度最高达到47 ℃,在下一个工作点到来之前电感温度又恢复到41 ℃;同时该电感在没有加循环水的情况下通过了112 kA的电动力考核。试验结果与理论分析吻合较好,重频水冷电感运行稳定,从而验证了理论分析和设计的正确性。 相似文献
6.
设计了一款全固态高重频高压脉冲电源,主电路采用以IGBT为主开关的半桥式固态Marx电路,驱动电路采用磁芯隔离带负压偏置的同步驱动方案,并由FPGA提供充放电控制信号和故障诊断、保护。该方案既可实现对多级电容的低阻抗的快速并联充电控制,又可实现截尾功能以加快脉冲后沿获得方波脉冲,且可实现百μs以上的宽脉冲输出,可用来产生高压脉冲电场。此外,该电源还可在突发模式下输出脉冲个数和频率均可调的多个高频脉冲系列。实验表明,该输出电压幅值可高达40 kV,输出峰值电流可达100 A,重频可达30 kHz,上升沿和下降沿均低于100 ns,突发模式下重频可高达200 kHz。所设计的脉冲电源输出参数连续可调,且体积小巧。 相似文献
7.
低杂波、电子回旋和中性束等系统作为二级加热的重要手段,将分步投入HL-2A装置并开展实验。为了满足辅助加热各系统工程调试及实验需要,须配置符合各系统要求的高压脉冲调制电源。 相似文献
8.
为满足脉冲磁窗技术对磁体激励电流的需求(平台期时间1~10 ms可调,最小值约24 kA),研究了一种能量利用率高、能库小的多电容器组分时放电电源。设计了脉冲电源的拓扑结构,基于仿真分析了电源参数与电流纹波、电容器组路数之间的关系,及其对放电回路参数变化的敏感性,给出了6路电容器组分时放电的优化结构,并通过实验进行了验证。实验过程中通过晶闸管串联提高了其关断的可靠性,通过二极管三串两并的方式解决了重频模式下二极管承受反向电压能力下降的问题,进一步提高了电源放电的可靠性。 相似文献
9.
针对激光器电源的应用环境,设计了基于DSP的电源控制系统,使电源具备输出电压0~30 kV可调,重复频率1~100 Hz可调,并提供了远程计算机控制和本地液晶键盘控制两种控制方式。设计了过压、过流、过热、超时等多重保护电路和电源的外触发控制接口。对激光器电源控制系统进行相应的电磁兼容设计,并使用光纤控制及反馈系统,有效地增强了电源控制系统的抗干扰性能。将该电源用于激光器的发光试验,通过调节激光器电源的各种控制参数,可以使激光器的出光强度、出光功率、出光时间等得到调节,从而为各种研究工作提供便利。实验结果表明在进行激光器发光实验时,该电源能够输出幅值稳定、频率符合要求的重频脉冲高压,最高输出电压可达到30 kV,充放电频率可达到100 Hz。 相似文献
10.
针对激光器电源的应用环境,设计了基于DSP的电源控制系统,使电源具备输出电压0~30 kV可调,重复频率1~100 Hz可调,并提供了远程计算机控制和本地液晶键盘控制两种控制方式。设计了过压、过流、过热、超时等多重保护电路和电源的外触发控制接口。对激光器电源控制系统进行相应的电磁兼容设计,并使用光纤控制及反馈系统,有效地增强了电源控制系统的抗干扰性能。将该电源用于激光器的发光试验,通过调节激光器电源的各种控制参数,可以使激光器的出光强度、出光功率、出光时间等得到调节,从而为各种研究工作提供便利。实验结果表明在进行激光器发光实验时,该电源能够输出幅值稳定、频率符合要求的重频脉冲高压,最高输出电压可达到30 kV,充放电频率可达到100 Hz。 相似文献
11.
针对等离子体的应用,基于级联型电压叠加技术研制了一种最高输出电压为20 kV的高压微秒脉冲源,该电源由40个相同的电源模块组成,其单个模块电压等级为500 V,降低了对器件的绝缘耐压要求。电源的输出电压值在0~20 kV之间可调;重复频率在0~10 kHz之间、脉宽在0~30 μs之间可调;该电源的上升沿和下降沿均在1 μs以内。模块化的设计提高了电源的冗余容错能力。将该电源作为产生等离子体的激励源时,其输出的高压脉冲波形稳定,且根据负载对输出高压波形的要求不同,该电源可以方便地进行调节。 相似文献
12.
13.
为满足不可逆电穿孔对高压纳秒脉冲电源的需求,并且突破电源模块耐压的限制,提出了一款以正极性Marx为主电路、具有ns级前沿的高重复频率的亚微秒高压脉冲电源。该脉冲电源使用光纤传输信号,经过驱动芯片放大信号后,利用磁芯变压器传递驱动信号给MOSFET。磁芯变压器给电路提供了磁隔离,使驱动电路不会受高压输出的影响,提高了电路的耐压水平。驱动电路设计简单,所需元器件较少,可提供负压偏置,使开关管可靠关断,提高电路的抗电磁干扰能力,保障电路稳定运行。此电源由16级电路构成,实验表明:在10 kΩ纯阻性负载上,当输入电压为630 V时,即可得到10 kV的高压输出。其最小脉宽为300 ns,频率1 Hz~10 kHz可调。该脉冲电源结构紧凑,能够做到输出电压、脉宽、频率可调。研究了磁芯材料和匝数对驱动脉宽的影响。结果表明:匝比的增加会影响信号脉宽,在一定的条件下,单匝电感量的差异和磁芯材料的不同对信号脉宽的影响较小。 相似文献
14.
采用串联单传输线、并联Blumlein脉冲形成线和高重复频率固体开关等技术路线开展了MHz重复频率脉冲功率技术研究。利用串联单传输线获得了幅度约200 kV,时间间隔约500 ns的双脉冲。利用并联使用的Blumlein系统和特殊设计的汇流/隔离网络获得了幅度约275 kV,时间间隔约500 ns的三脉冲。利用并联MOSFET和感应叠加原理研制了6 kV/2.5 MHz固体调制器。结果表明:3种方式均可以猝发MHz的方式输出高品质的高压脉冲串,可根据实际的需求选择合适技术路线。 相似文献
15.
为满足HL-2A装置低杂波电流驱动等辅助加热系统的需要,分析设计了基于脉冲调制技术的大功率高压电源,为速调管提供阴极高压。高压电源采用了模块化串联的系统结构,通过控制算法的调节,电源输出连续可调,使低压低频直流脉冲电源转化为高压高频直流脉冲电源,还具有高功率、高稳定、高冗余的特点。重点对模块的器件参数、选型、工艺等进行详细设计分析,利用多绕组变压器的漏感作为模块的滤波电感,选用特性更好的金属薄膜电容、绝缘栅双极晶体管等器件,优化模块结构;设计了29个副边绕组的多绕组高压隔离变压器,设计了电源控制系统,得出适合本电源控制的控制算法,易于调整高压的幅值以及高压的上升下降时间。最后给出大量实验结果,验证电源的保护能力,两种主要的电源控制算法的可操作性及实用性。试验证明,此套电源不仅满足负载提出的快速保护的要求,其电源工作的稳定度等其他参数也满足设计要求。 相似文献
16.
脉冲电容的充电电源是脉冲功率技术中的关键设备,为研究更高精度的高压脉冲电容充电电源,基于一种较为新颖的双谐振拓扑结构,通过推导传递函数,分析了其电压和电流传输特性。根据双谐振电路存在两个谐振点的特性,提出基于双谐振变换器的充电电源充电方式,即充电阶段采用串联谐振工作模式,到高压保持阶段通过频率调制降低开关频率至接近第二谐振点,实现对脉冲电容自放电压降的动态补偿,从而保证高压充电电源充电精度的同时,极大地提高脉冲电容的高压稳定度。为验证所提出方式的可行性,基于Matlab/simulink搭建仿真模型,分别对串联谐振全桥变换器和双谐振全桥变换器两种拓扑结构进行仿真,实验结果验证了所提出双谐振拓扑的频率调制方式的可行性。 相似文献
17.
18.
19.
20.
对HL-2A 装置原有的高压电源进行了高频化改造,改造后的单元电源采用脉冲步进阶梯调制(PSM)技术,采用24 个不可控整流电源模块与4 个调节电源模块串联输出,通过控制各模块的投入切出,使输出电压范围在0~20kV 可调,模块开关频率最高可以达到20kHz。通过仿真和实验测试结果表明,该电源运行参数可以达到20kV/200A,开关频率最高达到了20kHz,能够满足系统的实验需求。 相似文献