首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 750 毫秒
1.
sol-gel 法在有机-无机杂化体系中制备二氧化硅微粒   总被引:1,自引:0,他引:1  
利用sol-gel法,通过正硅酸乙酯(tetraethyl orthosilicate(TEOS))在聚氧化乙烯/二甲基甲酰胺溶液中水解、缩聚,制备了粒径分布均匀的微米级二氧化硅粒子;利用扫描电子显微镜观测了制备条件对二氧化硅粒子的粒度和形貌的影响;研究了这一方法在制备无机粒子过程中的原理.  相似文献   

2.
单分散二氧化硅球形颗粒的制备与形成机理   总被引:52,自引:1,他引:52  
赵丽  余家国  程蓓  赵修建 《化学学报》2003,61(4):562-566
在醇水混合溶剂中以氨作催化剂,正硅酸乙酯为硅源,通过溶胶—凝胶工艺制 备单分散二氧化硅球形颗粒,通过透视电镜进行研究各种反应条件如溶剂类型、氨 和水的浓度、水解温度等对二氧化硅的颗粒大小和形貌的影响.结果显示:以甲醇 和乙醇为溶剂可以形成单分散的二氧化硅球形颗粒,以丙醇和丁醇为溶剂,二氧化 硅球形颗粒容易聚集;在其它条件不变的情况下,球形颗粒的粒径随水和硅源的浓 度增加而增大;而且水解温度的升高,生成的颗粒粒径也逐渐增大,仔细研究和讨 论了二氧化硅颗粒在不同反应条件下的形成机理.  相似文献   

3.
十四烷基芳基磺酸盐形成的分子有序组合体   总被引:1,自引:0,他引:1  
以表面张力法、碘光谱法、水增溶法和相态图法研究了自制的三种十四烷基芳基磺酸盐在不同条件下形成的分子有序组合体(胶束、反胶束和微乳液),并考察了分子结构、溶剂、无机盐和短链醇等对其的影响.结果表明:增加十四烷基芳基磺酸盐分子亲油基支化度,不利于其在水溶液或混合极性溶剂(乙二醇-水)中形成胶束而有利于其在非极性溶剂正庚烷中形成反胶束;溶剂极性的降低,促使表面活性剂溶液由胶束溶液→单体溶液→反胶束溶液转变;无机盐或短链醇的加入促进了水溶液中胶束的形成,且反离子价态数或醇烷基碳原子数越大,越有利于胶束形成;无机盐浓度的增加导致表面活性剂/正丁醇/正辛烷/NaCl/水形成的微乳液体系在一定温度下发生由WinsorI→WinsorIII→WinsorII型的转变.  相似文献   

4.
辛醇改性纳米二氧化硅表面的研究   总被引:18,自引:0,他引:18  
纳米粒子由于粒径小,所以具有很高的比表面积,表面原子处于高度活化状态,使得表面能很高,粒子易于团聚,填充未经表面处理的纳米粒子,不但起不到特殊作用,反而会成为复合材料的力学弱点。所以要对纳米粒子进行表面改性,提高分散性,增加纳米粒子与聚合物间的界面结合力。用醇类对许多粉体进行酯化反应是常用的表面改性方法。金属氧化物与醇的反应是酯化反应[1]。酯化反应修饰法对于表面为弱酸性和中性的纳米粒子最为有效,例如SiO2等。醇的羟基与SiO2的表面羟基发生反应脱掉一分子水,达到表面接枝的目的。方程式为:这样R基团接枝到SiO2的表面,由于R基团是亲油性的,从而增加了极性的SiO2纳米粒子与有机物的润湿性。为了推动反应正向进行,关键在于及时将产生的水份引出反应体系。目前国内外用醇对纳米粒子进行表面改性主要采用常规回流法和高压反应釜法[2]。由于微波照射具有对物质高效、均匀的加热作用,同时还具有电磁场对反应分子间行为的直接作用而引起的所谓“非热效应”,所以本实验采用微波照射法用正辛醇对SiO2纳米微粒进行表面酯化反应并与常规回流法进行比较。关于该方面的研究报道国内外较少。1实验部分1.1实验原料纳米SiO2:(10~20nm...  相似文献   

5.
Au@SiO2核壳纳米粒子的制备及其表面增强拉曼光谱   总被引:2,自引:0,他引:2  
采用柠檬酸钠还原氯金酸法制备金溶胶, 以正硅酸乙酯(TEOS)为硅源, 氨水作催化剂, 制备以金为核, 二氧化硅为壳的核壳纳米粒子. 金纳米粒子的粒径可以通过柠檬酸钠和氯金酸的比例控制, 通过调节TEOS的量和反应的时间可以控制二氧化硅壳层的厚度. 以苯硫酚为探针分子研究了核壳结构纳米粒子的表面增强拉曼散射(SERS)效应与二氧化硅壳层厚度之间的关系. 研究结果表明, 金内核电磁场增强效应随着二氧化硅壳层厚度的增加逐渐减弱, 且其衰减速度比具有相同尺度的双金属核壳结构纳米粒子的慢. 此外, 探针分子主要以物理作用吸附在二氧化硅的表面, 可通过洗涤方法将探针分子除去, 从而可使该复合结构基底用于循环SERS分析.  相似文献   

6.
反相微乳液法制备纳米SiO2的研究   总被引:10,自引:0,他引:10  
在壬基酚聚氧乙烯5醚(NP-5)/环己烷/氨水的反相微乳液体系中,进行正硅酸乙酯(TEOS)的水解、缩合反应,得到粒径在30~50 nm的单分散纳米SiO2胶体。红外光谱法(FTIR)及透射电子显微镜(TEM)观察证明了纳米SiO2粒子的生成。反相微乳液体系相图的研究表明,水相为氨水比纯水有较窄的W/O型微乳区。氨水微乳液是碱催化TEOS水解、缩合制备纳米SiO2粒子的适宜体系。当体系中TEOS的浓度增大时,粒子的粒径随之增大。降低NP-5  相似文献   

7.
以正硅酸乙酯(TEOS)、十六烷基三甲基溴化氨(CTAB)、盐酸(HCl)、乙醇和水为原料,通过溶胶-凝胶法提拉涂膜,再经700 ℃快速淬火200 s,制备了二氧化硅(SiO2)纳米粒子涂层。 研究了CTAB浓度、提拉速度、停留时间和提拉涂膜次数对透射率的影响,结果表明,当CTAB质量分数为2.5%,提拉速度为100 mm/min,停留时间为60 s,提拉涂膜1次得到的SiO2纳米粒子涂层透射率最高,可达95.9%。 该涂层具备超亲水性并能耐受6H铅笔刮痕测试。 实验还表明,在SiO2溶胶液中加入CTAB,通过其与TEOS部分水解生成的物种的相互作用,可以改善酸性催化条件下形成的SiO2溶胶的微观结构,从而提高了涂层的透射率和亲水性。  相似文献   

8.
采用Stöber方法,通过调节反应温度及乙醇和水的体积,合成了不同粒径的二氧化硅纳米粒子.以合成的粒径为20 nm的二氧化硅纳米粒子为原料,采用简单、方便的喷涂方法在玻璃片上构筑了纳米粒子涂层.在550 ℃煅烧二氧化硅纳米粒子涂层,增强了二氧化硅纳米粒子在玻璃片上的附着力.用1H, 1H, 2H, 2H-全氟辛基三乙氧基硅烷修饰之后,二氧化硅纳米粒子涂层的表面润湿性由亲水性转变为疏水性.通过喷涂法制备的二氧化硅纳米粒子涂层具有减反增透效果,当二氧化硅纳米粒子质量分数为0.48%、循环喷涂沉积数为3时,涂层在可见光范围内的最大透光率可达95.5%.用扫描电子显微镜观测涂层表面形貌发现,喷涂法制备的涂层是均匀的、可控的.喷涂技术构筑纳米粒子涂层具有简单快速、可大面积应用等优点.  相似文献   

9.
用三种不同的方法将巯基丙基三甲氧基硅烷(MPTMS)引入二氧化硅网络中, 合成了粒径为50-200 nm的巯丙基功能化的介孔纳米二氧化硅, 并利用透射电子显微镜, 热重分析等手段对其形貌与性能进行了表征. 在巯丙基官能团的作用下介孔纳米二氧化硅的形貌发生了重大改变, 由非常规则的六角形变为纳米棒. 控制反应时间可以调节介孔纳米二氧化硅的粒径大小, 用三乙醇胺代替氢氧化钠可以合成直径在100 nm以下的功能化介孔二氧化硅粒子. 为了保护巯基官能团, 选用了酸醇提取法去除模板. 另外, 对介孔二氧化硅粒子的形成机制也进行了探讨.  相似文献   

10.
在碱性条件下水解正硅酸乙酯(TEOS)制备纳米二氧化硅(SiO_2)粒子,并采用同步荧光光谱和紫外可见分光光度法探讨了SiO_2对牛血清白蛋白(Bovine Serum Albumin,BSA)结构的影响。结果显示,SiO_2纳米粒子对BSA的结构没有发生显著的影响,这说明在实验条件下,SiO_2不会改变BSA分子的结构和微环境。  相似文献   

11.
TS-1分子筛的合成Ⅰ.29Si和1H NMR研究正硅酸乙酯的水解   总被引:2,自引:0,他引:2  
利用29Si和1H NMR方法研究了TS-1分子筛合成过程中正硅酸乙酯(TEOS)的水解行为.1H NMR结果表明,TEOS在四丙基氢氧化铵(TPAOH)溶液中的水解速度快于在四乙基氢氧化铵(TEAOH)中的水解速度.TEOS水解后的29Si NMR谱显示,TEOS在TPAOH中水解产生的聚合硅酸根物种的分布与在TEAOH中的类似,都存在着单体、二聚、三聚及环聚等硅酸根物种的平衡,但TEOS-TEAOH体系中低聚硅酸根物种的浓度明显大于TEOS-TPAOH中的浓度.向水解后的样品中添加水,可促使多聚硅酸根物种转化为低聚物种.大量异丙醇的加入将导致单聚和二聚硅酸根物种的高聚.钛酸四丁酯加入到TEOS-TPAOH水解体系中得到的29Si NMR结果明显不同于TEOS-TEAOH水解体系.  相似文献   

12.
The formation process of silica nanoparticles in lysine-silica mixtures was studied using dynamic light scattering (DLS) and pulsed-field gradient (PFG) NMR measurements. (1)H NMR shows line broadening of the lysine resonances during TEOS hydrolysis/nanoparticle formation. Analysis of the TEOS hydrolysis kinetics show that TEOS hydrolysis is the rate-limiting step in particle formation, and has an activation energy of 20.5 kJ/mol. Transverse relaxation measurements show a corresponding decrease in T(2) with TEOS hydrolysis, indicating a reduction in the lysine mobility due to lysine-silica interactions. PFG NMR results indicate a systemic decrease in the self-diffusion coefficient of lysine as particle formation proceeds. The results obtained can be described using a two-state model wherein lysine is either free in solution or bound to the nanoparticles. Analysis of the PFG data of samples made at various temperatures show that lysine coverage upon complete hydrolysis is between 2.5 and 2.8 mmol lysine/kg solution, and insensitive to the heating temperature. PFG NMR shows a linear increase in the amount of bound lysine with increasing lysine content, indicating an increase in the surface area present, i.e. more and smaller particles, with increased lysine content. The PFG NMR results presented give quantitative insights that indicate that while pH is likely the primary driver for the rate of particle formation and particle size, lysine is critical for stabilization of the nanoparticles.  相似文献   

13.
The acid hydrolysis under ultrasound stimulation of solventless tetraethoxysilane(TEOS)-water mixtures was studied at 40°C, by means of a heat flux calorimetric method, as a function of the initial water/TEOS molar ratio (r) ranging from 2 to 10. The method is based on the time record of the exothermic heat peak of hydrolysis, arising after an induction time under ultrasound stimulation, which is a measure of the reaction rate. The hydrolysed quantity was found to be approximately independent of the water/TEOS molar ratio, even for r < 4. Polycondensation reaction takes place mainly for low water/TEOS molar ratio in order to supply water to allow almost complete hydrolysis. The overall process of dissolution and hydrolysis has reasonably been described by a previous modelling. The dissolution process of water in TEOS, under ultrasound stimulation and acid conditions, was found to be rather dependent of the alcohol produced in the hydrolysis reaction instead of the initial water quantity present in the mixture.  相似文献   

14.
Particle formation in the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) was studied by varying pH (9.5-11) with the basic catalysts NH3, methylamine (MA), and dimethylamine (DMA) in the presence of 5 mol/m3 CH3COOH, which was chosen to suppress time variations of pH and ionic strength during the reaction. Spherical particles were formed for MA and DMA at catalyst concentrations of 0.02-0.2 kmol/m3 and for NH3 at catalyst concentrations of 0.1-1.5 kmol/m3. In a common range of catalyst concentrations for spherical particle formation, average particle size was largest for DMA and smallest for NH3. Hydrolysis rate of TEOS could be quantified by the use of buffer systems as a function of TEOS and OH- concentrations. A specific relation was not found between the hydrolysis and the particle size. The zeta potential of silica particles measured in the reaction solvent was in the order DMA < MA < NH3, and ionic strength, estimated from pH in the reactions, was in the order DMA approximately equal to MA > NH3. This suggested that the particle sizes were controlled by electrostatic particle interactions.  相似文献   

15.
The long-time behavior of the hydrolysis and condensation reaction of the tetraethoxysilane (TEOS) pre-solution at different pH values with and without addition of polyethyleneglycol (PEG) for various aging times was characterized by liquid (1)H, (13)C, and (29)Si NMR spectroscopy. After aging, the alcohol is released in the TEOS pre-solution without addition of PEG at pH 3 and 9. On the other hand, the hydrolysis and condensation rates of the TEOS pre-solutions with addition of PEG at pH 3 and 9 increase except for the TEOS pre-solution with addition of PEG 2000 at pH 9. However, the hydrolysis and condensation rates of the TEOS pre-solutions with and without addition of PEG at pH 5 and 7 are almost the same before and after aging. The effects of the pH values, polymer size and aging times on the hydrolysis and condensation reaction of the TEOS pre-solutions are discussed.  相似文献   

16.
Particle formation in ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) was studied in aqueous solvents that contained ethanol, 1-propanol or 1-butanol. The reactions were performed at a TEOS concentration of 0.2 kmol/m3, a H2O concentration of 5 kmol/m3 and a NH3 concentration of 1 kmol/m3. Average particle size was the largest for 1-butanol and the smallest for ethanol. No specific relation of the average diameter to hydrolysis rate was observed in the reactions. Difference in dielectric constant of the solvent and particle surface potential in the reactions indicated that the magnitudes of interparticle repulsion in the solvents corresponded with the order of the average particle sizes. This suggested that the particle sizes were dominated by the interparticle repulsion.  相似文献   

17.
The effect of 3-methacryloxypropyltrimethoxysilane (MPTMOS) on the nucleation of silica particles synthesized in a water?ethanol?ammonia?tetraethoxysilane (TEOS) mixture by the Stöber?Fink?Bohn method has been studied. It has been shown, using atomic force microscopy, that, as the content of MPTMOS in a TEOS + MPTMOS precursor mixture is increased from 0 to 12.5 mol %, the final silica particle size decreases from 470 to 10 nm, because the number of nucleation centers increases by several orders of magnitude. In contrast to TEOS, hydrolysis of MPTMOS yields a smaller amount of deprotonated orthosilicic acid monomers, the condensation of which is hindered by electrostatic repulsion. The polycondensation of electrically neutral products of MPTMOS hydrolysis gives rise to a larger number of nucleation centers in the reaction mixture.  相似文献   

18.
In situ small-angle X-ray scattering (SAXS) is used to investigate the influence of alcohol identity and content on silicalite-1 growth from clear solutions at 368 K. Several tetraalkyl orthosilicates (Si(OR)4, R = Me, Pr, and Bu) are used to synthesize silicalite-1 from clear solution mixtures comparable to those previously investigated (i.e. 1:0.36:20 TEOS:TPAOH:H2O (TEOS = tetraethyl orthosilicate; TPAOH = tetrapropylammonium hydroxide), 368 K). All TPAOH-organosiloxane mixtures studied form silica nanoparticles after aging at room temperature for 24 h. Full-profile fitting analysis of the SAXS data indicates the particles are ellipsoidal and is inconsistent with the presence of "nanoslabs" or "nanoblocks". Synthesis using TEOS as the silica source have an induction period of approximately 7.5 h and a growth rate of 1.90 +/- 0.10 nm/h at 368 K. Changing the silica source to tetramethyl orthosilicate (TMOS) does not change the induction period; however the particle growth rate is decreased to 1.65 +/- 0.09 nm/h at 368 K. Variable-temperature SAXS measurements for syntheses with TEOS and TMOS show the activation energy for silicalite-1 growth is 60.0 +/- 2.9 and 73.9 +/- 2.8 kJ/mol, respectively, indicating the alcohol identity does influence the growth rate. By mixing tetrapropyl orthosilicate (TPOS) with TEOS (1.6:1.0 molar ratio) as the silica source, the precursor solution shows a shorter induction period (6.0 h) and a faster particle growth rate (2.16 +/- 0.06 nm/h). The alcohol identity effect is more pronounced when other organocations (e.g. alkyltripropylammonium cations) are used to make silicalite-1 at 368 K. Removing ethanol from the precursor solution decreases the induction period to approximately 4.5 h and increases the particle growth rate to 2.99 +/- 0.13 nm/h. Mixtures with 2 equiv of ethanol have an induction period and particle growth rate of 6.0 h and 2.04 +/- 0.03 nm/h, respectively. The results demonstrate the alcohol identity and content influence silicalite-1 growth kinetics. One possible explanation is varying the alcohol identity and content changes the strength of the hydrophobic hydration of the structure-directing agent and the water-alcohol interaction, resulting in less efficient interchange between clathrated water molecules and solvated silicate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号