首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文提出了一个基于SQUIDs和腔场的大失谐相互作用传送量子信息的方案,此方案可以直接地、百分之百地实现量子信息的传送.该方案中腔场和SQUIDs系统之间没有量子信息的传递,腔场只是虚激发,这样对腔的品质因子的要求大大的降低了.同时也可以在SQUIDs之间建立传送量子信息的量子网络.  相似文献   

2.
本文提出了一个基于腔QED的隐形传送四比特团簇类态方案,在该方案中选用两个GHZ纠缠对作为量子通道,通过对原子和腔场的大失谐作用以及外加强经典场的辅助,可以制备纠缠的量子通道,完成联合的三粒子测量,成功地实现隐形传送四比特团簇类态。结果还表明,此方案不受腔场退相干和热场的影响.  相似文献   

3.
通过Raman相互作用隐形传送未知多原子纠缠态   总被引:8,自引:8,他引:0  
陈美锋  马宋设 《光子学报》2007,36(6):1152-1155
基于多粒子纠缠态在证明量子非定域性和量子信息处理方面的重要应用,提出一种方案隐形传送未知原子纠缠态.方案基于Λ型三能级原子与单模腔场的简并Raman相互作用.首先让n个原子相继通过一个相干腔场来制备量子通道.然后发送者让携带未知纠缠态的另n个原子相继通过相干腔场并通过对原子与腔场的探测作联合测量.当|α|1时,可以用探测正交态的方法探测腔场.最后接收者根据由经典通道得到的联合测量结果重构初始态.方案的特点是用一个相干态与多个原子的纠缠态作为量子通道,简单易行.该方案有望在证明量子非定域性和量子信息过程中有重要的应用价值.  相似文献   

4.
计新  张寿 《量子光学学报》2007,13(2):98-103
我们提出一个利用腔QED技术控制传输任意两原子态的方案.在此方案中,我们选择一个GHZ态和一个EPR对作为量子通道.在控制者的帮助下,发送者可以把量子信息传送给接收者.在传输过程中,两对原子分别与两个全同单模场相互作用,同时两对原子分别由两个全同经典场驱动.该方案对腔衰变和热场不敏感,并且传输成功的几率为1.  相似文献   

5.
本文提出一个基于原子和腔场共振相互作用传送未知原子直积态的腔QED方案,原子和腔场通过J-C哈密顿量发生共振相互作用.在这个方案里,我们只需要用两个原子接受被传送的原子态以及两个单模腔作为量子通道.该方案既不需要贝尔态测量,也不需要任何操作重构纠缠初态,并且传送成功的概率为100%.这个方案也可以推广到传送n个原子的直积态.  相似文献   

6.
杨雄  童朝阳  匡乐满 《物理学报》2008,57(3):1689-1692
提出了一个利用耦合双原子同时与大失谐的双光子Jaynes-Cummings模相互作用实现量子信息转移的方案.通过控制原子与腔场的相互作用时间及量子位的旋转操作角,可以实现原子与原子之间及原子与腔场之间的量子信息转移,而包含在欲转移量子态上的信息可被完全擦除. 关键词: 二能级原子 双光子Janeys-Cummings 模型 量子信息转移 偶极-偶极相互作用  相似文献   

7.
肖骁琦  杨联华 《光学学报》2008,29(9):1812-1815
提出了两个利用三原子W类纠缠态作为量子通道.在腔量子电动力学(QED)体系中实现单原子态的远程制备方案:一个是接收者借助于原子与单模腔场之间的大失谐相互作用实现初始态重建,另一个则是接受者利用原子与单模腔场之间的共振相互作用完成远程态制备.两方案中都涉及到了一位发送者和两位接收者,发送者可以将被传送态远程制备到两位接收者中的任何一位的手中,而另一位接受者必须为其提供必要的协助.表明利用原子与腔场之间的大失谐相互作用的方法可以很好地克服腔场的消相干,降低对腔品质因子的要求;而利用共振相互作用的方法则无需引入辅助原子,操作简便.但不论采用何种方法,实现单原子远程态制备的总成功概率是相同的.  相似文献   

8.
向少华  宋克慧 《光子学报》2002,31(12):1444-1447
提出了一个未知原子的隐形传态方案,它是通过原子与腔场大失谐相互作用实现的.方案中,两原子缠结的EPR态作为联系发送者与接收者之间的量子信息通道,将欲传送的未知原子和EPR态中的一个原子依次注入到初始制备于相干态 |α>的腔场,然后分别对两原子和腔场进行联合测量,通过经典信息通道将测量结果传递给接收者.这样,接收者只要对EPR的另一个原子执行相应的幺正操作就能重构未知原子态.  相似文献   

9.
本文提出用两个超导量子相干装置在一个单模大失谐腔中制备一个最大纠缠态的新方案,在这个方案里,腔场态处于虚激发,在超导量子相干装置和腔场之间没有信息传递,因此对腔的品质要求大大减低.  相似文献   

10.
在腔-超导量子干涉仪(SQUID)体系中提出了两个实现1→2最优相位协变量子克隆的方案.在这两个方案中,三能级SQUID通过拉曼转换与量子化腔场和微波脉冲相作用.在大失谐的条件下,激发态被绝热消去.腔场始终处于真空态,在腔和SQUID之间没有信息转移,腔的衰退得到很好的抑制.用这种方法,相位协变量子克隆可以通过四步来实现.  相似文献   

11.
Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.  相似文献   

12.
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.  相似文献   

13.
This paper proposes a method of generating multipartite entanglement through using d.c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d.c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.  相似文献   

14.
利用双光子过程耦合腔系统实现量子信息转移   总被引:2,自引:1,他引:1  
卢道明 《光学学报》2012,32(6):627001-231
给出了利用两个二能级原子和耦合腔双光子过程相互作用系统实现量子信息转移的方案。该方案中二能级原子通过双光子跃迁与单模腔场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子信息从一个原子转移到另一个原子。  相似文献   

15.
We propose scheme for transferring quantum state between any pair of nodes in a quantum network. Each node consists of an atom and a cavity, with the atom acting as the quantum bit. Any two adjacent nodes are connected by an optical fiber. During the operation neither the atomic system nor the fibers are excited, which is important in view of decoherence. Under certain conditions, the probability that the cavities are excited is negligible. The method has an inherent robustness against the fluctuation perturbations in the classical control parameters and the randomness in the atomic position. The scheme can be generalized to implement quantum phase gate between any two remote qubits.  相似文献   

16.
何锐 《物理学报》2012,61(3):30303-030303
量子计算如何在实验上实现一直受到广泛关注. 包括超导Josephson结的小量子器件(如超导量子干涉仪, SQUID)是实现量子计算的一种非常具有发展前景的物理系统. 本文通过对SQUID和介观LC共振器耦合电路系统的Cooper对数-相量子化机制的讨论, 合理地调制参数, 由此导出了该耦合电路在两能级近似下的J-C模型形式, 并提出了一种基于此模型的可实现量子信息传递的方案. 根据此方案可以利用介观LC共振器为数据总线来执行两SQUID间电荷量子比特的传递.  相似文献   

17.
We consider a one-dimensional array of L identical coupled cavities, and each cavity is doped with a two-level qubit. Experimentally, it has been developed in several varieties by the newest technology. We find that the one-qubit quantum state can be perfectly transferred through the cavity array, and the entanglement between the first two qubits can also be transferred to the last two qubits. In addition, we successfully realized the entangling gate and swap gate in the coupled cavity array.  相似文献   

18.
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.  相似文献   

19.
邵晓强  陈丽  张寿  赵永芳 《中国物理 B》2009,18(12):5161-5167
We present a scheme for implementing a three-qubit phase gate via manipulating rf superconducting quantum interference device (SQUID) qubits in the decoherence-free subspace with respect to cavity decay. Through appropriate changes of the coupling constants between rf SQUIDs and cavity, the scheme can be realized only in one step. A high fidelity is obtained even in the presence of decoherence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号