首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.  相似文献   

3.
The present paper focuses on determining the number of PLS components by using resampling methods such as cross validation (CV), Monte Carlo cross validation (MCCV), bootstrapping (BS), etc. To resample the training data, random non‐negative weights are assigned to the original training samples and a sample‐weighted PLS model is developed without increasing the computational burden much. Random weighting is a generalization of the traditional resampling methods and is expected to have a lower risk of getting an insufficient training set. For prediction, only the training samples with random weights less than a threshold value are selected to ensure that the prediction samples have less influence on training. For complicated data, because the optimal number of PLS components is often not unique or readily distinguished and there might exist an optimal region of model complexity, the distribution of prediction errors can be more useful than a single value of root mean squared error of prediction (RMSEP). Therefore, the distribution of prediction errors are estimated by repeated random sample weighting and used to determine model complexity. RSW is compared with its traditional counterparts like CV, MCCV, BS and a recently proposed randomization test method to demonstrate its usefulness. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Chung H  Cho S  Toyoda Y  Nakano K  Maeda M 《The Analyst》2006,131(5):684-691
A new quantitative calibration algorithm, called "Moment Combined Partial Least Squares (MC-PLS)", which combines the moment of spectrum and conventional PLS was proposed. Its calibration performance was evaluated for the analyses of three import petroleum and petrochemical products: gasoline, naphtha and polyol samples. The selected properties for these products included the research octane number (RON) and Reid vapor pressure (RVP) for gasoline, the distillation temperature at 10% (D 10%) for naphtha and the hydroxyl (OH) number for polyol. The major concept presented here used the moment to find the closest spectrum of a sample in a given dataset, and generate the difference spectrum and the corresponding difference in the property. These difference spectra and property differences were then used for PLS calibration. The moment has been employed in spectroscopic fields as a simple and effective "spectral feature characteristic" using just a few scalar values (moments). MC-PLS showed improved prediction performance over PLS for each case. In MC-PLS, the difference spectra generated using the moments were used as explained; therefore, additional detail in spectral variations can be utilized for calibrations. Additionally, the difference in the property was employed as reference data, so that its variation range was smaller when compared with that of the original property. Consequently, the MC-PLS performance could be better since the feature-enhanced spectra were used to model a narrower range of property variations. In the case of the D 10% prediction for naphtha, a non-linear prediction pattern that occurred in conventional PLS was effectively corrected using the MC-PLS method.  相似文献   

6.
7.
In this paper, we proposed a wavelength selection method based on random decision particle swarm optimization with attractor for near‐infrared (NIR) spectra quantitative analysis. The proposed method was incorporated with partial least square (PLS) to construct a prediction model. The proposed method chooses the current own optimal or the current global optimal to calculate the attractor. Then the particle updates its flight velocity by the attractor, and the particle state is updated by the random decision with the new velocity. Moreover, the root‐mean‐square error of cross‐validation is adopted as the fitness function for the proposed method. In order to demonstrate the usefulness of the proposed method, PLS with all wavelengths, uninformative variable elimination by PLS, elastic net, genetic algorithm combined with PLS, the discrete particle swarm optimization combined with PLS, the modified particle swarm optimization combined with PLS, the neighboring particle swarm optimization combined with PLS, and the proposed method are used for building the components quantitative analysis models of NIR spectral datasets, and the effectiveness of these models is compared. Two application studies are presented, which involve NIR data obtained from an experiment of meat content determination using NIR and a combustion procedure. Results verify that the proposed method has higher predictive ability for NIR spectral data and the number of selected wavelengths is less. The proposed method has faster convergence speed and could overcome the premature convergence problem. Furthermore, although improving the prediction precision may sacrifice the model complexity under a certain extent, the proposed method is overfitted slightly. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Optimized sample-weighted partial least squares   总被引:2,自引:0,他引:2  
Lu Xu 《Talanta》2007,71(2):561-566
In ordinary multivariate calibration methods, when the calibration set is determined to build the model describing the relationship between the dependent variables and the predictor variables, each sample in the calibration set makes the same contribution to the model, where the difference of representativeness between the samples is ignored. In this paper, by introducing the concept of weighted sampling into partial least squares (PLS), a new multivariate regression method, optimized sample-weighted PLS (OSWPLS) is proposed. OSWPLS differs from PLS in that it builds a new calibration set, where each sample in the original calibration set is weighted differently to account for its representativeness to improve the prediction ability of the algorithm. A recently suggested global optimization algorithm, particle swarm optimization (PSO) algorithm is used to search for the best sample weights to optimize the calibration of the original training set and the prediction of an independent validation set. The proposed method is applied to two real data sets and compared with the results of PLS, the most significant improvement is obtained for the meat data, where the root mean squared error of prediction (RMSEP) is reduced from 3.03 to 2.35. For the fuel data, OSWPLS can also perform slightly better or no worse than PLS for the prediction of the four analytes. The stability and efficiency of OSWPLS is also studied, the results demonstrate that the proposed method can obtain desirable results within moderate PSO cycles.  相似文献   

10.
Phosphoinositide 3-kinase alpha (PI3Kα) is a lipid kinase involved in several cellular functions such as cell growth, proliferation, differentiation and survival, and its anomalous regulation leads to cancerous conditions. PI3Kα inhibition completely blocks the cancer signalling pathway, hence it can be explored as an important therapeutic target for cancer treatment. In the present study, docking analysis of 49 selective imidazo[1,2-a]pyrazine inhibitors of PI3Kα was carried out using the QM-Polarized ligand docking (QPLD) program of the Schrödinger software, followed by the refinement of receptor–ligand conformations using the Hybrid Monte Carlo algorithm in the Liaison program, and alignment of refined conformations of inhibitors was utilized for the development of an atom-based 3D-QSAR model in the PHASE program. Among the five generated models, the best model was selected corresponding to PLS factor 2, displaying the highest value of Q2test (0.650). The selected model also displayed high values of r2train (0.917), F-value (166.5) and Pearson-r (0.877) and a low value of SD (0.265). The contour plots generated for the selected 3D-QSAR model were correlated with the results of docking simulations. Finally, this combined information generated from 3D-QSAR and docking analysis was used to design new congeners.  相似文献   

11.
Chen ZP  Morris J 《The Analyst》2008,133(7):914-922
In process analytical applications, spectral measurements can be subject to changes in process temperature, pressure, flow turbulence, and compactness as well as other external variations. Generally, the variations of external variables influence spectral data in a non-linear manner which leads to the poor predictive ability of bilinear calibration models on raw spectral data. In this contribution, the influence of external variables on spectral data is generally classified into two different modes, multiplicative influential mode and composition-related influential mode. A new chemometric method, termed Extended Loading Space Standardization (ELSS), has been developed to explicitly model these two kinds of influential modes. ELSS was applied to two sets of spectral data with fluctuations in external variables and its performance evaluated and compared with global partial least squares (PLS) models and Loading Space Standardization (LSS). Results show that ELSS can efficiently model the external non-linear effects in both data sets and greatly improve the accuracy of predictions with the mean square error of prediction for test samples being 2-3 times smaller than those of LSS and global PLS.  相似文献   

12.
13.
A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.  相似文献   

14.
15.
16.
17.
Fourier transform-near infrared (FT-NIR) and FT-Raman spectrometries have been used to design partial least squares (PLS) calibration models for the determination of the ethanol content of ethanol fuel and alcoholic beverages. In the FT-NIR measurements the spectra were obtained using air as reference, and the spectral region for PLS modeling were selected based on the spectral distribution of the relative standard deviation in concentration. In the FT-Raman measurements hexachloro-1,3-butadiene (HCBD) has been used as an external standard. In the PLS/FT-NIR modeling for ethanol fuel analysis 50 ethanol fuel standards (84.9-100% (w/w)) were used (25 in the calibration, 25 in the validation). In the PLS/FT-Raman modeling 25 standards were used (13 in the calibration, 12 in the validation). The PLS/FT-NIR and FT-Raman models for beverage analysis made use of 24 standards (0-100% (v/v)). Twelve of them contained sugars (1-5% (w/w)), one-half was used in the calibration and the other half in the validation. Different spectral pre-processing were used in the PLS modeling, depending on the type of sample investigated. In the ethanol fuel analysis the FT-NIR pre-processing was a 17 points smoothed first derivative and for beverages no spectral pre-processing was used. The FT-Raman spectra were pre-processed by vector normalization in the ethanol fuel analysis and by a second derivative (17 points smoothing) in the beverage analysis. The PLS models were used in the analysis of real ethanol fuel and beverage samples. A t-test has shown that the FT-NIR model has an accuracy equivalent to that of the reference method (ASTM D4052) in the analysis of ethanol fuel, while in the analysis of beverages, the FT-Raman model presents an accuracy equivalent to the reference method. The limits of detection for NIR and Raman calibration models were 0.05 and 0.2% (w/w), respectively. It has also been shown that both techniques, present better results than gas chromatography (GC) in evaluating the ethanol content of beverages.  相似文献   

18.
邵学广  陈达  徐恒  刘智超  蔡文生 《中国化学》2009,27(7):1328-1332
偏最小二乘法(PLS)在近红外光谱(NIR)定量分析中占有重要地位,但预测结果往往容易受到样本分组和奇异样本等因素的影响,稳健性不强。多模型PLS (EPLS)方法在模型稳健性上得到提高,然而它无法识别样本中存在的奇异样本。为了同时提高模型的预测准确性和稳健性,本文提出了一种根据取样概率重新取样的多模型PLS方法,称为稳健共识PLS(RE-PLS)方法。该方法通过迭代赋权偏最小二乘法(IRPLS)计算样本回归残差得到每个校正集样本的取样概率,然后根据样本的取样概率来选择训练子集建立多个PLS模型,最后将所有PLS模型的预测结果平均作为最终预测结果。该方法用于两种不同植物样品的近红外光谱建模,并与传统的PLS及EPLS方法进行比较。结果表明该方法可以有效的避免校正集中奇异样本对模型的影响,同时可以提高预测精确度和稳健性。对于含有较多奇异样本的,复杂近红外光谱烟草实际样本,利用简单PLS或者EPLS方法建模预测效果不是很理想,而RE-PLS凭借其独特优势则有望在这种复杂光谱定量分析中得到广泛的应用。  相似文献   

19.
应用异烟肼片粉末的近红外漫反射光谱数据分别结合偏最小二乘法(PLS)和径向基神经网络(RBFNN)建立定量分析模型,并用所建模型对预测集样品进行了预测,结果表明:应用RBFNN所建立的定量分析模型优于PLS模型,相关系数(r)值由0.99593提高到0.99734,交互验证均方根误差(RMSECV)值由0.00523下降到0.00423,预测均方根误差(RMSEP)值由0.00614下降到0.00501。  相似文献   

20.
The performance of Partial Least Squares regression (PLS) in predicting the output with multivariate cross‐ and autocorrelated data is studied. With many correlated predictors of varying importance PLS does not always predict well and we propose a modified algorithm, Partitioned Partial Least Squares (PPLS). In PPLS the predictors are partitioned into smaller subgroups and the important subgroups with high prediction power are identified. Finally, regular PLS analysis using only those subgroups is performed. The proposed Partitioned PLS (PPLS) algorithm is used in the analysis of data from a real pharmaceutical batch fermentation process for which the process variables follow certain profiles during a specific fermentation period. We observed that PPLS leads to a more accurate prediction of the yield of the fermentation process and an easier interpretation, since fewer predictors are used in the final PLS prediction. In the application important issues such as alignment of the profiles from one batch to another and standardization of the predictors are also addressed. For instance, in PPLS noise magnification due to standardization does not seem to create problems as it might in regular PLS. Finally, PPLS is compared to several recently proposed functional PLS and PCR methods and a genetic algorithm for variable selection. More specifically for a couple of publicly available data sets with near infrared spectra it is shown that overall PPLS has lower cross‐validated error than PLS, PCR and the functional modifications hereof, and is similar in performance to a more complex genetic algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号