首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stage-structured predator–prey models exhibit rich and interesting dynamics compared to homogeneous population models. The objective of this paper is to study the bifurcation behavior of stage-structured prey–predator models that admit stage-restricted predation. It is shown that the model with juvenile-only predation exhibits Hopf bifurcation with the growth rate of the adult prey as the bifurcation parameter; also, depending on parameter values, a stable limit cycle will emerge, that is, the bifurcation will be of supercritical nature. On the other hand, the analysis of the model with adult-stage predation shows that the system admits a fold-Hopf bifurcation with the adult growth rate and the predator mortality rate as the two bifurcation parameters. We also demonstrate the existence of a unique limit cycle arising from this codimension-2 bifurcation. These results reveal far richer dynamics compared to models without stage-structure. Numerical simulations are done to support analytical results.  相似文献   

2.
In this paper, we deal with the effect of the shape of herd behavior on the interaction between predator and prey. The model analysis was studied in three parts. The first, The analysis of the system in the absence of spatial diffusion and the time delay, where the local stability of the equilibrium states, the existence of Hopf bifurcation have been investigated. For the second part, the spatiotemporal dynamics introduce by self diffusion was determined, where the existence of Hopf bifurcation, Turing driven instability, Turing-Hopf bifurcation point have been proved. Further, the order of Hopf bifurcation points and regions of the stability of the non trivial equilibrium state was given. In the last part of the paper, we studied the delay effect on the stability of the non trivial equilibrium, where we proved that the delay can lead to the instability of interior equilibrium state, and also the existence of Hopf bifurcation. A numerical simulation was carried out to insure the theoretical results.  相似文献   

3.
We examine in detail the effect of a periodic perturbation upon a system undergoing a Hopf bifurcation. Particular attention is paid to the case of resonance between the natural Hopf bifurcation frequency and the perturbation frequency. It is shown that for a certain parameter range this Hopf bifurcation is modified by the perturbation to exhibit frequency (phase) pulling and locking, and the nature of this frequency locking is described. In addition, the effect of adding diffusion to the system is discussed, and it is shown that diffusive waves are possible.  相似文献   

4.
The aim of this paper is to study the stability and Hopf bifurcation in a general class of differential equation with nonlocal delayed feedback that models the population dynamics of a two age structured spices. The existence of Hopf bifurcation is firstly established after delicately analyzing the eigenvalue problem of the linearized nonlocal equation. The direction of the Hopf bifurcation and stability of the bifurcated periodic solutions are then investigated by means of center manifold reduction. Subsequently, we apply our main results to explore the spatial‐temporal patterns of the nonlocal Mackey‐Glass equation. We obtain both spatially homogeneous and inhomogeneous periodic solutions and numerically show that the former is stable while the latter is unstable. We also show that the inhomogeneous periodic solutions will eventually tend to homogeneous periodic solutions after transient oscillations and increasing of the immature mobility constant will shorten the transient oscillation time.  相似文献   

5.
Both discrete and distributed delays are considered in a two‐neuron system. We analyze the influence of interaction coefficient and time delay on the Hopf‐pitchfork bifurcation. First, we obtain the codimension‐2 unfolding with original parameters for Hopf‐pitchfork bifurcation by using the center manifold reduction and the normal form method. Next, through analyzing the unfolding structure, we give complete bifurcation diagrams and phase portraits, in which multistability and other dynamical behaviors of the original system are found, such as a stable periodic orbit, the coexistence of two stable nontrivial equilibria, and the coexistence of a stable periodic orbit and two stable equilibria. In addition, the obtained theoretical results are verified by numerical simulations. Finally, we perform the comparisons of the obtained results of Hopf‐pitchfork bifurcation with other Hopf‐fold bifurcation results in some biological neural systems and give the obtained mathematical results corresponding to the physical states of neurons. Copyright © 2015 JohnWiley & Sons, Ltd.  相似文献   

6.
We give here a planar quadratic differential system depending on two parameters, λ, δ. There is a curve in the λ-δ space corresponding to a homoclinic loop bifurcation (HLB). The bifurcation is degenerate at one point of the curve and we get a narrow tongue in which we have two limit cycles. This is the first example of such a bifurcation in planar quadratic differential systems. We propose also a model for the bifurcation diagram of a system with two limit cycles appearing at a singular point from a degenerate Hopf bifurcation, and dying in a degenerate HLB. This model shows a deep duality between degenerate Hopf bifurcations and degenerate HLBs. We give a bound for the maximal number of cycles that can appear in certain simultaneous Hopf and homoclinic loop bifurcations. We also give an example of quadratic system depending on three parameters which has at one place a degenerate Hopf bifurcation of order 3, and at another place a Hopf bifurcation of order 2 together with a HLB. We characterize the planar quadratic systems which are integrable in the neighbourhood of a homoclinic loop.  相似文献   

7.
A vibratory system having symmetrically placed rigid stops and subjected to periodic excitation is considered. Local codimension two bifurcations of the vibratory system with symmetrical rigid stops, associated with double Hopf bifurcation and interaction of Hopf and pitchfork bifurcation, are analyzed by using the center manifold theorem technique and normal form method of maps. Dynamic behavior of the system, near the points of codimension two bifurcations, is investigated by using qualitative analysis and numerical simulation. Hopf-flip bifurcation of fixed points in the vibratory system with a single stop are briefly analyzed by comparison with unfoldings analyses of Hopf-pitchfork bifurcation of the vibratory system with symmetrical rigid stops. Near the value of double Hopf bifurcation there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-periodic impact motions are represented by the closed circle and “tire-like” attractor in projected Poincaré sections. With change of system parameters, the quasi-periodic impact motions usually lead to chaos via “tire-like” torus doubling.  相似文献   

8.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

9.
The classic models of mass transfer for free turbulent jets very often contain neglected terms. This is because these terms are considered so small that their effect can be neglected; however, because the models are usually structurally unstable, these neglected terms, even if they are small, may change the behavior of the system. Furthermore, the existing classic models cannot simulate the far behavior of the fluid, for example, the eddies existing in the jet region of the fluid stream. In this paper, we consider a general implicit small perturbation of the classic model and study the effect of it on the system. We will show that the local bifurcations may imply the existence of eddies for the fluid stream; for example, we will see that, under some conditions, the Hopf bifurcation generates permanent eddies for the system.  相似文献   

10.
A predator-prey system with disease in the prey is considered. Assume that the incidence rate is nonlinear, we analyse the boundedness of solutions and local stability of equilibria, by using bifurcation methods and techniques, we study Bogdanov-Takens bifurcation near a boundary equilibrium, and obtain a saddle-node bifurcation curve, a Hopf bifurcation curve and a homoclinic bifurcation curve. The Hopf bifurcation and generalized Hopf bifurcation near the positive equilibrium is analyzed, one or two limit cycles is also discussed.  相似文献   

11.
In this paper, considering full Logistic proliferation of CD4+ T cells, we study an HIV pathogenesis model with antiretroviral therapy and HIV replication time. We first analyze the existence and stability of the equilibrium, and then investigate the effect of the time delay on the stability of the infected steady state. Sufficient conditions are given to ensure that the infected steady state is asymptotically stable for all delay. Furthermore, we apply the Nyquist criterion to estimate the length of delay for which stability continues to hold, and investigate the existence of Hopf bifurcation by using a delay τ as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the main results.  相似文献   

12.
In this paper, we investigate the stability and Hopf bifurcation of a diffusive predator-prey system with herd behaviour. The model is described by introducing both time delay and nonlocal prey intraspecific competition. Compared to the model without time delay, or without nonlocal competition, thanks to the together action of time delay and nonlocal competition, we prove that the first critical value of Hopf bifurcation may be homogenous or non-homogeneous. We also show that a double-Hopf bifurcation occurs at the intersection point of the homogenous and non-homogeneous Hopf bifurcation curves. Furthermore, by the computation of normal forms for the system near equilibria, we investigate the stability and direction of Hopf bifurcation. Numerical simulations also show that the spatially homogeneous and non-homogeneous periodic patters.  相似文献   

13.
This paper is concerned with a delayed Lotka–Volterra two species competition diffusion system with a single discrete delay and subject to homogeneous Dirichlet boundary conditions. The main purpose is to investigate the direction of Hopf bifurcation resulting from the increase of delay. By applying the implicit function theorem, it is shown that the system under consideration can undergo a supercritical Hopf bifurcation near the spatially inhomogeneous positive stationary solution when the delay crosses through a sequence of critical values.  相似文献   

14.
In this paper, a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey is proposed. The dissipativity of the system and the existence of all possible equilibria are investigated. The investigation emphasizes the exploring of bifurcation. It is shown that the system exists several non-hyperbolic positive equilibria, such as a weak focus of multiplicities one and two, (degenerate) saddle–nodes and Bogdanov–Takens singularities (cusp case) of codimensions 2 and 3. At these equilibria, it is proved that the system undergoes various kinds of bifurcations, such as saddle–node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation and Bogdanov–Takens bifurcation of codimensions 2 and 3. With the parameters selected properly, there exhibits a limit cycle, a homoclinic loop, two limit cycles, a semistable limit cycle, or the simultaneous occurrence of a homoclinic loop and a limit cycle in the system. Moreover, it is also proved that the system has a cusp of codimension at least 4. Hence, there may exist three limit cycles generated from Hopf bifurcation of codimension 3. Numerical simulations are done to support the theoretical results.  相似文献   

15.
In this paper, we have studied a prey–predator model living in a habitat that divided into two regions: an unreserved region and a reserved (refuge) region. The migration between these two regions is allowed. The interaction between unreserved prey and predator is Crowley–Martin‐type functional response. The local and global stability of the system is discussed. Further, the system is extended to incorporate the effect of time delay. Then the dynamical behavior of the system is analyzed, taking delay as a bifurcation parameter. The direction of Hopf bifurcation and the stability of the bifurcated periodic solution are determined with the help of normal form theory and centre manifold theorem. We have also discussed the influence of prey refuge on densities of prey and predator species. The analytical results are supplemented with numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Time delays are often sources of complex behavior in dynamic systems. Yet its complexity needs to be further explored, particularly when multiple time delays are present. As a purpose to gain insight into such complexity under multiple time delays, we investigate the mechanism for the action of multiple time delays on a particular non-autonomous system in this paper. The original mathematical model under consideration is a Duffing oscillator with harmonic excitation. A delayed system is obtained by adding delayed feedbacks to the original system. Two time delays are involved in such system, one of which in the displacement feedback and the other in the velocity feedback. The time delays are taken as adjustable parameters to study their effects on the dynamics of the system. Firstly, the stability of the trivial equilibrium of the linearized system is discussed and the condition under which the equilibrium loses its stability is obtained. This leads to a critical stability boundary where Hopf bifurcation or double Hopf bifurcation may occur. Then, the chaotic behavior of such system is investigated in detail. Particular emphasis is laid on the effect of delay difference between two time delays on the chaotic properties. A Melnikov’s analysis is employed to obtain the necessary condition for onset of chaos resulting from homoclinic bifurcation. And numerical analyses via the bifurcation diagram and the top Lyapunov exponent are carried out to show the actual time delay effect. Both the results obtained by the two analyses show that the delay difference between two time delays plays a very important role in inducing or suppressing chaos, so that it can be taken as a simple but efficient “switch” to control the motion of a system: either from order to chaos or from chaos to order.  相似文献   

17.
In this paper, we establish a Hopf bifurcation theorem for abstract Cauchy problems in which the linear operator is not densely defined and is not a Hille?CYosida operator. The theorem is proved using the center manifold theory for non-densely defined Cauchy problems associated with the integrated semigroup theory. As applications, the main theorem is used to obtain a known Hopf bifurcation result for functional differential equations and a general Hopf bifurcation theorem for age-structured models.  相似文献   

18.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper,a 3D chaotic system with multi-parameters is introduced. The dynamical systems of the original ADVP circuit and the modified ADVP model are regarded as special examples to the system.Some basic dynamical behaviors such as the stability of equilibria,the existence of Hopf bifurcation are investigated.We analyse the Hopf bifurcation of the system comprehensively using the first Lyapunov coefficient by precise symbolic computation.As a result,in fact we have studied the further dynamical behaviors.  相似文献   

20.
This paper deals with dynamics of a predator-prey model with Allee effect and herd behavior. We first study the stability of non-negative constant solutions for such system. We also establish the existence of Hopf bifurcation solutions for such predator-prey model. The stability and bifurcation direction of Hopf bifurcation solution in the case of spatial homogeneity are further discussed. At the same time, several examples are given by MATLAB. Finally, the numerical simulations of the system are carried out through MATLAB, which intuitively verifies and supplements the theoretical analysis results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号