首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yersinia organisms cause many infectious diseases by invading human cells and delivering their virulence factors via the type three secretion system (T3SS). One alternative strategy in the fight against these pathogenic organisms is to interfere with their T3SS. Previous studies demonstrated that thiol peroxidase, Tpx is functional in the assembly of T3SS and its inhibition by salicylidene acylhydrazides prevents the secretion of pathogenic effectors. In this study, the aim was to identify potential inhibitors of Tpx using an integrated approach starting with high throughput virtual screening and ending with molecular dynamics simulations of selected ligands. Virtual screening of ZINC database of 500,000 compounds via ligand-based and structure-based pharmacophore models retrieved 10,000 hits. The structure-based pharmacophore model was validated using high-throughput virtual screening (HTVS). After multistep docking (SP and XP), common scaffolds were used to find common substructures and the ligand binding poses were optimized using induced fit docking. The stability of the protein–ligand complex was examined with molecular dynamics simulations and the binding free energy of the complex was calculated. As a final outcome eight compounds with different chemotypes were proposed as potential inhibitors for Tpx. The eight ligands identified by a detailed virtual screening protocol can serve as leads in future drug design efforts against the destructive actions of pathogenic bacteria.  相似文献   

2.
《印度化学会志》2021,98(3):100041
COVID-19 has affected millions of people. Although many drugs are in use to combat disease, there is not any sufficient treatment yet. Having critical role in propagation of the novel coronavirus (SARS-CoV-2) works Main Protease up into a significant drug target. We have performed a molecular docking study to define possible inhibitor candidates against SARS-CoV-2 Main Protease enzyme. Besides docking Remdesivir, Ribavirin, Chloroquine and 28 other antiviral inhibitors (totally 31 inhibitors) to Main Protease enzyme, we have also performed a molecular docking study of 2177 ligands, which are used against Main Protease for the first time by using molecular docking program Autodock4. All ligands were successfully docked into Main Protease enzyme binding site. Among all ligands, EY16 coded ligand which previously used as EBNA1-DNA binding blocker candidate showed the best score for Main Protease with a binding free energy of −10.83 ​kcal/mol which was also lower than re-docking score of N3 ligand (−10.72 ​kcal/mol) contained in crystal structure of Main Protease. After analyzing the docking modes and docking scores we have found that our ligands have better binding free energy values than the inhibitors in use of treatment. We believe that further studies such as molecular dynamics or Molecular Mechanic Poisson Boltzmann Surface Area studies can make contribution that is more exhaustive to the docking results.  相似文献   

3.
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the present age, due to the rapid increase in antibiotic resistance worldwide, TB has become a major threat to human life. Regardless of significant efforts have been inclined to improve the healthcare systems for improving diagnosis, treatment, and anticipatory measures controlling TB is challenging. To date, there are no such therapeutic chemical agents available to fight or control the bacterial drug-resistance. The catalase-peroxidase enzyme (katG) which encoded by the katG gene of Mtb is most frequently getting mutated and hence promotes Isoniazid resistance by diminishing the normal activity of katG enzyme. In the current study, an effort has been intended to find novel and therapeutically active antibacterial chemical compounds through pharmacoinformatics methodologies. Initially, the five mutant katG were generated by making mutation of Ser315 by Thr, Ile, Arg, Asn, and Gly followed by structural optimizations. About eight thousand small molecules were collected from the Asinex antibacterial library. All molecules were docked to active site of five mutant katG and wild type katG. To narrow down the chemical space several criteria were imposed including, screening for highest binding affinity towards katG proteins, compounds satisfying various criterion of drug-likeliness properties like Lipinski’s rule of five (RO5), Veber’s rule, absorption, distribution, metabolism, and excretion (ADME) profile, and synthetic accessibility. Finally, five molecules were found to be important antibacterial katG inhibitors. All the analyzed parameters suggested that selected molecules are promising in nature. Binding interactions analysis revealed that proposed molecules are efficient enough to form a number of strong binding interactions with katG proteins. Dynamic behavior of the proposed molecules with katG protein was evaluated through 100 ns molecular dynamics (MD) simulation study. Parameters calculated from the MD simulation trajectories adjudged that all molecules can form stable complexes with katG. High binding free energy of all proposed molecules definitely suggested strong affection towards the katG. Hence, it can be concluded that proposed molecules might be used as antibacterial chemical component subjected to experimental validation.  相似文献   

4.
In the present study, we carried out thermodynamic integration molecular dynamics simulation for a pair of analogous inhibitors binding with Erk kinase to investigate how computation performs in reproducing the relative binding free energy. The computation with BCC-AM1 charges for ligands gave ?1.1?kcal/mol, deviated from experimental value of ?2.3?kcal/mol by 1.2?kcal/mol, in good agreement with experimental result. The error of computed value was estimated to be 0.5?kcal/mol. To obtain convergence, switching vdw interaction on and off required approximately 10 times more CPU time than switching charges. Residue-based contributions and hydrogen bonding were analyzed and discussed. Furthermore, subsequent simulation using RESP charge for ligand gave ΔΔG of ?1.6?kcal/mol. The computed results are better than the result of ?5.6?kcal/mol estimated using PBSA method in a previous study. Based on these results, we further carried out computations to predict ΔΔG for five new analogs, focusing on placing polar and nonpolar functional groups at the meta site of benzene ring shown in the Fig.?1, to see if these ligands have better binding affinity than the above ligands. The computations resulted that a ligand with polar –OH group has better binding affinity than the previous examined ligand by ~2.0?kcal/mol and two other ligands have better affinity by ~1.0?kcal/mol. The predicted better inhibitors of this kind should be of interest to experimentalist for future experimental enzyme and/or cell assays.  相似文献   

5.
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.  相似文献   

6.
The p53 protein, also called guardian of the genome, plays a critical role in the cell cycle regulation and apoptosis. This protein is frequently inactivated in several types of human cancer by abnormally high levels of its negative regulator, mouse double minute 2 (MDM2). As a result, restoration of p53 function by inhibiting p53-MDM2 protein–protein interaction has been pursued as a compelling strategy for cancer therapy. To date, a limited number of small-molecules have been reported as effective p53−MDM2 inhibitors. X-ray structures of MDM2 in complex with some ligands are available in Protein Data Bank and herein, these data have been exploited to efficiently identify new p53-MDM2 interaction antagonists through a hierarchical virtual screening strategy. For this purpose, the first step was aimed at compiling a focused library of 686,630 structurally suitable compounds, from PubChem database, similar to two known effective inhibitors, Nutlin-3a and DP222669. These compounds were subjected to the subsequent structure-based approaches (quantum polarized ligand docking and molecular dynamics simulation) to select potential compounds with highest binding affinity for MDM2 protein. Additionally, ligand binding energy, ADMET properties and PAINS analysis were also considered as filtering criteria for selecting the most promising drug-like molecules. On the basis of these analyses, three top-ranked hit molecules, CID_118439641, CID_60452010 and CID_3106907, were found to have acceptable pharmacokinetics properties along with superior in silico inhibitory ability towards the p53-MDM2 interaction compared to known inhibitors. Molecular docking and molecular dynamics results well confirmed the interactions of the final selected compounds with critical residues within p53 binding site on the MDM2 hydrophobic clefts with satisfactory thermodynamics stability. Consequently, the new final scaffolds identified by the presented computational approach could offer a set of guidelines for designing promising anti-cancer agents targeting p53-MDM2 interaction.  相似文献   

7.
An effective virtual screening protocol was developed against an extended active site of CYP2C9, which was derived from X-ray structures complexed with flubiprofen and S-warfarin. Virtual screening has been effectively supported by our structure-based pharmacophore model. Importance of hot residues identified by mutation data and structural analysis was first estimated in an enrichment study. Key role of Arg108 and Phe114 in ligand binding was also underlined. Our screening protocol successfully identified 76% of known CYP2C9 ligands in the top 1% of the ranked database resulting 76-fold enrichment relative to random situation. Relevance of the protocol was further confirmed in selectivity studies, when 89% of CYP2C9 ligands were retrieved from a mixture of CYP2C9 and CYP2C8 ligands, while only 22% of CYP2C8 ligands were found applying the structure-based pharmacophore constraints. Moderate discrimination of CYP2C9 ligands from CYP2C18 and CYP2C19 ligands could also be achieved extending the application domain of our virtual screening protocol for the entire CYP2C family. Our findings further demonstrate the existence of an active site comprising of at least two binding pockets and strengthens the need of involvement of protein flexibility in virtual screening.  相似文献   

8.
Theileria annulata secretes peptidyl prolyl isomerase enzyme (TaPIN1) to manipulate the host cell oncogenic signaling pathway by disrupting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) protein level leading to an increased level of c-Jun proto-oncogene. Buparvaquone is a hydroxynaphthoquinone anti-theilerial drug and has been used to treat theileriosis. However, TaPIN1 contains the A53 P mutation that causes drug resistance. In this study, potential TaPIN1 inhibitors were investigated using a library of naphthoquinone derivatives. Comparative models of mutant (m) and wild type (wt) TaPIN1 were predicted and energy minimization was followed by structure validation. A naphthoquinone (hydroxynaphthalene-1,2-dione, hydroxynaphthalene-1,4-dione) and hydroxynaphthalene-2,3-dione library was screened by Schrödinger Glide HTVS, SP and XP docking methodologies and the docked compounds were ranked by the Glide XP scoring function. The two highest ranked docked compounds Compound 1 (4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynaphthalene-1,2-dione) and Compound 2 (6-acetyl-1,4,5,7,8-pentahydroxynaphthalene-2,3-dione) were used for further molecular dynamics (MD) simulation studies. The MD results showed that ligand Compound 1 was located in the active site of both mTaPIN1 and wtTaPIN1 and could be proposed as a potential inhibitor by acting as a substrate antagonist. However, ligand Compound 2 was displaced away from the binding pocket of wtTaPIN1 but was located near the active site binding pocket of mTaPIN1 suggesting that could be selectively evaluated as a potential inhibitor against the mTaPIN1. Compound 1 and Compound 2 ligands are potential inhibitors but Compound 2 is suggested as a better inhibitor for mTaPIN1. These ligands could also further evaluated as potential inhibitors against human peptidyl prolyl isomerase which causes cancer in humans by using the same mechanism as TaPIN1.  相似文献   

9.
Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase (MtDXR) is a potential target for antitubercular chemotherapy. In the absence of its crystallographic structure, our aim was to develop a structural model of MtDXR. This will allow us to gain early insight into the structure and function of the enzyme and its likely binding to ligands and cofactors and thus, facilitate structure-based inhibitor design. To achieve this goal, initial models of MtDXR were generated using MODELER. The best quality model was refined using a series of minimizations and molecular dynamics simulations. A protein–ligand complex was also developed from the initial homology model of the target protein by including information about the known ligand as spatial restraints and optimizing the mutual interactions between the ligand and the binding site. The final model was evaluated on the basis of its ability to explain several site-directed mutagenesis data. Furthermore, a comparison of the homology model with the X-ray structure published in the final stages of the project shows excellent agreement and validates the approach. The knowledge gained from the current study should prove useful in the design and development of inhibitors as potential novel therapeutic agents against tuberculosis by either de novo drug design or virtual screening of large chemical databases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The present study aimed to identify the prospective inhibitors of MurD, a cytoplasmic enzyme that catalyzes the addition of d-glutamate to the UDP-N-acetylmuramoyl-l-alanine nucleotide precursor in Mycobacterium tuberculosis (MTB), using virtual screening, docking studies, pharmacokinetic analysis, Molecular Dynamic (MD) simulation, and Molecular Mechanics Generalized Born and Surface Area (MM-GBSA) analyses. The three dimensional (3D) structure was determined based on the homology technique using a template from Streptococcus agalactiae. The modeled structure had three binding sites, namely; substrate binding site (Val18, Thr19, Asp39, Asp40, Gly75, Asn147, Gln171 and His192), the ATP binding site (Gly123, Lys124, Thr125, Thr126, Glu166, Asp283, and Arg314) and the glutamic acid binding site (Arg382, Ser463, and Tyr470). These residues mentioned above play a critical role in the catalytic activity of the enzyme, and their inhibition could serve as a stumbling block to the normal function of the enzyme. A total of 10,344 obtained from virtual screened of Zinc and PubChem databases. These compounds further screened for Lipinski rule of five, docking studies and pharmacokinetic analysis. Four compounds with good binding energies (ZINC11881196 = −10.33 kcal/mol, ZINC12247644 = −8.90 kcal/mol, ZINC14995379 =−8.42 kcal/mol, and PubChem6185 = −8.20 kcal/mol), better than the binding energies of the ATP (−2.31 kcal/mol) and the ligand with known IC50, Aminothiazole (−7.11 kcal/mol) were selected for the MD simulation and MM-GBSA analyses. The result of the analyses showed that all the four ligands formed a stable complex and had the binding free energies better than the binding energy of ATP. Therefore, these ligands considered as suitable prospective inhibitors of the MurD after experimental validation.  相似文献   

11.
Methionine Aminopeptidases MetAPs are divalent-cofactor dependent enzymes that are responsible for the cleavage of the initiator Methionine from the nascent polypeptides. MetAPs are classified into two isoforms: namely, MetAP1 and MetAP2. Several studies have revealed that MetAP2 is upregulated in various cancers, and its inhibition has shown to suppress abnormal or excessive blood vessel formation and tumor growth in model organisms. Clinical studies show that the natural product fumagillin, and its analogs are potential inhibitors of MetAP2. However, due to their poor pharmacokinetic properties and neurotoxicities in clinical studies, their further developments have received a great setback. Here, we apply structure-based virtual screening and molecular dynamics methods to identify a new class of potential inhibitors for MetAP2. We screened Otava’s Chemical Library, which consists of about 3 200 000 tangible-chemical compounds, and meticulously selected the top 10 of these compounds based on their inhibitory potentials against MetAP2. The top hit compounds subjected to ADMET predictor using 3 independent ADMET prediction programs, were found to be drug-like. To examine the stability of ligand binding mode, and efficacy, the unbound form of MetAP2, its complexes with fumagillin, spiroepoxytriazole, and the best promising compounds compound-3369841 and compound-3368818 were submitted to 100 ns molecular dynamics simulation. Like fumagillin, spiroepoxytriazole, and both compound-3369841 and compound-3368818 showed stable binding mode over time during the simulations. Taken together, these uninherited-fumagillin compounds may serve as new class of inhibitors or provide scaffolds for further optimization towards the design of more potent MetAP2 inhibitors -development of such inhibitors would be essential strategy against various cancer types.  相似文献   

12.
Sterol 14alpha-demethylases (CYP51) serve as primary targets for antifungal drugs, and specific inhibition of CYP51s in protozoan parasites Trypanosoma brucei (TB) and Trypanosoma cruzi (TC) might provide an effective treatment strategy for human trypanosomiases. Primary inhibitor selection is based initially on the cytochrome P450 spectral response to ligand binding. Ligands that demonstrate strongest binding parameters were examined as inhibitors of reconstituted TB and TC CYP51 activity in vitro. Direct correlation between potency of the compounds as CYP51 inhibitors and their antiparasitic effect in TB and TC cells implies essential requirements for endogenous sterol production in both trypanosomes and suggests a lead structure with a defined region most promising for further modifications. The approach developed here can be used for further large-scale search for new CYP51 inhibitors.  相似文献   

13.
Tuberculosis (TB) is a major global health challenge. It has been afflicting human for thousands of years and is still severely affecting a huge population. The etiological agent of the disease is Mycobacterium tuberculosis (MTB) that survives in the human host in latent, dormant, and non-replicative state by evading the immune system. It is one of the leading causes of infection related death worldwide. The situation is exacerbated by the massive increase in the resistant strains such as multi-drug resistant TB (MDR-TB) and extensive drug-resistant TB (XDR-TB). The resistance is as severe that it resulted in failure of the current chemotherapy regimens (i.e. anti-tubercular drugs). It is therefore imperative to discover the new anti-tuberculosis drug targets and their potential inhibitors. Current study has made the use of in silico approaches to perform the comparative metabolic pathway analysis of the MTBXDR1219 with the host i.e. H. sapiens. We identified several metabolic pathways which are unique to pathogen only. By performing subtractive genomic analysis 05 proteins as potential drug target are retrieved. This study suggested that the identified proteins are essential for the bacterial survival and non-homolog to the host proteins. Furthermore, we selected glucosyl-3-phosoglycerate phosphatase (GpgP, EC 5.4.2.1) out of the 05 proteins for molecular docking analysis and virtual screening. The protein is involved in the biosynthesis of methylglucose lipopolysaccharides (MGLPs) which regulate the biosynthesis of mycolic acid. Mycolic acid is the building block of the unique cell wall of the MTB which is responsible for the resistance and pathogenicity. A relatively larger library consisting of 10,431 compounds was screened using AutoDock Vina to predict the binding modes and to rank the potential inhibitors. No potent inhibitor against MTB GpgP has been reported yet, therefore ranking of compounds is performed by making a comparison with the substrate i.e. glucosyl-3-phosphoglycerate. The obtained results provide the understanding of underlying mechanism of interactions of ligands with protein. Follow up study will include the study of the Protein-Protein Interactions (PPIs), and to propose the potential inhibitors against them.  相似文献   

14.
Bedaquiline (BDQ) has demonstrated formidable bactericidal activity towards Mycobacterium tuberculosis (Mtb) in the treatment of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB). BDQ elicits its therapeutic function by halting the ionic shuttle of Mtb via mycobacterial F1F0 ATP-synthase blockade. However, triple mutations (L59 V, E61D and I66 M) at the ligand-binding cavity characterize emerging BDQ-resistant strains thereby restraining the potentials embedded in this anti-microbial compound, particularly in MDR/XDR-TB therapy.In this report, the effects of these triple mutations on BDQ-Mtb F1F0 ATP-synthase binding were investigated using molecular dynamics, free energy binding and residue interaction network (RIN) analyses.The highlight of our findings is the drastic reduction in BDQ binding affinity (ΔG) in the triple mutant protein, which was caused by a systemic loss in high-affinity interactions primarily mediated by L59, E61 and I66. While wildtype L59 and I66 formed pi-alkyl interactions with BDQ at the F1F0 ATP-synthase binding site, E61 elicited conventional (O--HO) bond. Upon transition, V59 and I66 were devoid of interactions with BDQ while D61 existed in a weaker non-conventional (C--HO) bond. Likewise, these mutations distorted the binding site and overall structural architecture of F1F0 ATP-synthase in the presence of BDQ as revealed by the RIN and conformational analyses.Insights from this study could serve as a starting point for the structure-based design of novel inhibitors that could overcome mutational setbacks posed by BDQ-resistant strains in MDR/XDR-TB treatment.  相似文献   

15.
Docking and pharmacophore screening tools were used to examine the binding of ligands in the active site of thymidine monophosphate kinase of Mycobacterium tuberculosis. Docking analysis of deoxythymidine monophosphate (dTMP) analogues suggests the role of hydrogen bonding and other weak interactions in enzyme selectivity. Water-mediated hydrogen-bond networks and a halogen-bond interaction seem to stabilize the molecular recognition. A pharmacophore model was developed using 20 dTMP analogues. The pharmacophoric features were complementary to the active site residues involved in the ligand recognition. On the basis of these studies, a composite screening model that combines the features from both the docking analysis and the pharmacophore model was developed. The composite model was validated by screening a database spiked with 47 known inhibitors. The model picked up 42 of these, giving an enrichment factor of 17. The validated model was used to successfully screen an in-house database of about 500,000 compounds. Subsequent screening with other filters gave 186 hit molecules.  相似文献   

16.
The current study was set to discover selective Plasmodium falciparum phosphatidylinositol-4-OH kinase type III beta (pfPI4KB) inhibitors as potential antimalarial agents using combined structure-based and ligand-based drug discovery approach. A comparative model of pfPI4KB was first constructed and validated using molecular docking techniques. Performance of Autodock4.2 and Vina4 software in predicting the inhibitor-PI4KB binding mode and energy was assessed based on two Test Sets: Test Set I contained five ligands with resolved crystal structures with PI4KB, while Test Set II considered eleven compounds with known IC50 value towards PI4KB. The outperformance of Autodock as compared to Vina was reported, giving a correlation coefficient (R2) value of 0.87 and 0.90 for Test Set I and Test Set II, respectively. Pharmacophore-based screening was then conducted to identify drug-like molecules from ZINC database with physicochemical similarity to two potent pfPI4KB inhibitors –namely cpa and cpb. For each query inhibitor, the best 1000 hits in terms of TanimotoCombo scores were selected and subjected to molecular docking and molecular dynamics (MD) calculations. Binding energy was then estimated using molecular mechanics–generalized Born surface area (MM-GBSA) approach over 50 ns MD simulations of the inhibitor-pfPI4KB complexes. According to the calculated MM-GBSA binding energies, ZINC78988474 and ZINC20564116 were identified as potent pfPI4KB inhibitors with binding energies better than those of cpa and cpb, with ΔGbinding ≥ −34.56 kcal/mol. The inhibitor-pfPI4KB interaction and stability were examined over 50 ns MD simulation; as well the selectivity of the identified inhibitors towards pfPI4KB over PI4KB was reported.  相似文献   

17.
Traditional vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors can manage angiogenesis; however, severe toxicity and resistance limit their long-term applications in clinical therapy. Shikonin (SHK) and its derivatives could be promising to inhibit the VEGFR-2 mediated angiogenesis, as they are reported to bind in the catalytic kinase domain with low affinity. However, the detailed molecular insights and binding dynamics of these natural inhibitors are unknown, which is crucial for potential SHK based lead design. Therefore, the present study employed molecular modeling and simulations techniques to get insight into the binding behaviors of SHK and its two derivates, β-hydroxyisovalerylshikonin (β-HIVS) and acetylshikonin (ACS). Here the intermolecular interactions between protein and ligands were studied by induced fit docking approach, which were further evaluated by treating QM/MM (quantum mechanics/molecular mechanics) and molecular dynamics (MD) simulation. The result showed that the naphthazarin ring of the SHK derivates is vital for strong binding to the catalytic domain; however, the binding stability can be modulated by the side chain modification. Because of having electrostatic potential, this ring makes essential interactions with the DFG (Asp1046 and Phe1047) motif and also allows interacting with the allosteric binding site. Taken together, the studies will advance our knowledge and scope for the development of new selective VEGFR-2 inhibitors based on SHK and its analogs.  相似文献   

18.
19.
Despite the efficacy of imatinib therapy in chronic myelogenous leukemia, the development of drug-resistant Abl mutants, especially the most difficult overcoming T315I mutant, makes the search for new Abl T315I inhibitors a very interesting challenge in medicinal chemistry. In this work, a multistep computational framework combining the three dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, molecular dynamics (MD) simulation and binding free energy calculation, was performed to explore the structural requirements for the Abl T315I activities of benzimidazole/benzothiazole derivatives and the binding mechanism between the inhibitors and Abl T315I. The established 3D-QSAR models exhibited satisfactory internal and external predictability. Docking study elucidated the comformations of compounds and the key amino acid residues at the binding pocket, which were confirmed by MD simulation. The binding free energies correlated well with the experimental activities. The MM-GBSA energy decomposition revealed that the van der Waals interaction was the major driving force for the interaction between the ligands and Abl T315I. The hydrogen bond interactions between the inhibitors and Met318 also played an important role in stablizing the binding of compounds to Abl T315I. Finally, four new compounds with rather high Abl T315I activities were designed and presented to experimenters for reference.  相似文献   

20.
Cyclin-Dependent Kinases (CDKs) are known to play crucial roles in controlling cell cycle progression of eukaryotic cell and inhibition of their activity has long been considered as potential strategy in anti-cancer drug research. In the present work, a series of porphyrin-anthraquinone hybrids bearing meso-substituents, i.e. either pyridine or pyrazole rings were designed and computationally evaluated for their Cyclin Dependent Kinase-2 (CDK2) inhibitory activity using molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking simulation revealed that all six porphyrin hybrids were able to bind to ATP-binding site of CDK2 and interacted with key residues constituted the active cavity of CDK2, while molecular dynamics simulation indicated that all porphyrins bound to CDK2 were stable for 6 ns. The binding free energies predicted by MM-PBSA method showed that most compounds exhibited higher affinity than that of native ligand (4-anilinoquinazoline, DTQ) and the affinity of mono-H2PyP-AQ was about three times better than that of DTQ, indicating its potential to be advanced as a new CDK2 inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号