首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colchicine (COL) is a well-known plant alkaloid long used for medical purposes due to the selective anti-inflammatory effect on acute gouty arthritis. It is also a kind of mitosis toxin with strong inhibitory effects of cell division and is therefore being applied to the treatment of various cancers. However, this product shows a variety of adverse effects that are significantly correlated with the dosage and have attracted much attention. For the first time, the present work obtained a new insight into the gastrointestinal toxicity of colchicine analogues by molecular docking analysis, which was based on the 3D structure of intestinal tight junction protein ZO-1 and the ligand library containing dozens of small-molecule compounds with the basic skeleton of COL and its metabolites. The binding energy and mode of protein–ligand interaction were investigated to better understand the structure–toxicity relationships of COL analogues and the mechanism of action as well. Cluster analysis clearly demonstrated the strong correlation between the binding energy and toxicity of ligand molecules. The interaction mode further revealed that the hydrogen bonding (via the C-7 amide or C-9 carbonyl group) and hydrophobic effect (at ring A or C) were both responsible for ZO-1-related gastrointestinal toxicity of COL analogues, while metabolic transformation via phase I and/or phase II reaction would significantly attenuate the gastrointestinal toxicity of colchicine, indicating an effective detoxication pathway through metabolism.  相似文献   

2.
High-mobility group box 1 protein (HMGB1) is a nuclear component, but extracellularly it serves as a signaling molecule involved in acute and chronic inflammation, for example in sepsis and arthritis. The identification of HMGB1 inhibitors is therefore of significant experimental and clinical interest. We show that glycyrrhizin, a natural anti-inflammatory and antiviral triterpene in clinical use, inhibits HMGB1 chemoattractant and mitogenic activities, and has a weak inhibitory effect on its intranuclear DNA-binding function. NMR and fluorescence studies indicate that glycyrrhizin binds directly to HMGB1 (K(d) approximately 150 microM), interacting with two shallow concave surfaces formed by the two arms of both HMG boxes. Our results explain in part the anti-inflammatory properties of glycyrrhizin, and might direct the design of new derivatives with improved HMGB1-binding properties.  相似文献   

3.
High Mobility Group Box 1 protein (HMGB1) is an abundant protein with multiple functions in cells, acting as a DNA chaperone and damage-associated molecular pattern molecule. It represents an attractive target for the treatment of inflammatory diseases and cancers. The plant natural product glycyrrhizin (GLR) is a well-characterized ligand of HMGB1 and a drug used to treat diverse liver and skin diseases. The drug is known to bind to each of the two adjacent HMG boxes of the non-glycosylated protein. In cells, HMGB1 is N-glycosylated at three asparagine residues located in boxes A and B, and these N-glycans are essential for the nucleocytoplasmic transport of the protein. But the impact of the N-glycans on drug binding is unknown. Here we have investigated the effect of the N-glycosylation of HMGB1 on its interaction with GLR using molecular modelling, after incorporation of three N-glycans on a Human HMGB1 structure (PDB code 2YRQ). Sialylated bi-antennary N-glycans were introduced on the protein and exposed in a folded or an extended conformation for the drug binding study. The docking of the drug was performed using both 18α- and 18β-epimers of GLR and the conformations and potential energy of interaction (ΔE) of the different drug-protein complexes were compared. The N-glycans do not shield the drug binding sites on boxes A and B but can modulate the drug-protein interaction, via both direct and indirect effects. The calculations indicate that binding of 18α/β-GLR to the HMG box is generally reduced when the protein is N-glycosylated vs. the non-glycosylated protein. In particular, the N-glycans in an extended configuration significantly weaken the binding of GLR to box-B. The effects of the N-glycans are mostly indirect, but in one case a direct contact with the drug, via a carbohydrate-carbohydrate interaction, was observed with 18β-GLR bound to Box-B of glycosylated HMGB1. For the first time, it is shown (at least in silico) that N-glycosylation, one of the many post-translational modifications of HMGB1, can affect drug binding.  相似文献   

4.
The stage of noncooperative interaction of the chromosomal nonhistone protein HMGB1 with DNA has been studied by spectroscopic methods and gel retardation. It was found that complexation was accompanied by compaction of the DNA molecule over a wide range of protein/DNA ratios in the complex. A circular dichroism study showed that the binding with DNA changed the secondary structure of the HMGB1 protein. Changes in the structure of the protein start under the conditions of an excess of binding sites on DNA and end at a ratio of ∼40–50 base pairs per protein molecule, the α-helicity of HMGB1 in the complex increasing by 20% compared with the free state. It is believed that the change in the secondary structure of HMGB1 during the binding with DNA underlies the mechanisms of the various functions of this protein in the cell.  相似文献   

5.
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage.Subject terms: Molecular biology, Medical research  相似文献   

6.
The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.  相似文献   

7.
8.
The WNK-SPAK/OSR1 signaling is a complex of serine and threonine protein kinases that involves in the regulation of human blood pressure. The WNK kinases phosphorylate and activate SPAK and OSR1 kinases through the interaction of RFQV motifs of WNK kinases with the C-terminal domains of SPAK and OSR1. Upon phosphorylation, SPAK and OSR1 phosphorylate key ion co-transporters such as Na+-[K+]-2Cl (NKCC1-2) and K+-Cl (KCC1-4), which are essential for electrolytes balance and blood pressure regulation. Targeting the binding site of the RFQV motifs of WNK kinases on the C-terminal domain (CTD) of SPAK and OSR1 has emerged as a valuable approach to inhibit the WNK-SPAK/OSR1 signaling pathway. Herein, an effort has been intended to pinpoint non-peptidic small-molecules that could disrupt the binding of SPAK/OSR1 to WNK kinases, hence, inhibit the SPAK and OSR1 phosphorylation and activation by WNK kinases through pharmacoinformatics and molecular dynamic simulation methodologies. A sequential structure-based virtual screening of a focus protein-protein interaction chemical library composed of 11,870 compounds lead to the identification of three compounds having good lead-compound properties with respect to their predicted inhibitory constants, pharmacophore fit scores, binding affinities, ADME-T parameters, drug-likeness properties and ligand efficiency metrics. The mechanism of interaction and binding stability of these compounds to OSR1-CTD were confirmed using molecular docking and dynamic simulation studies. Hence, the identified compounds may have therapeutic potential as novel antihypertensive agents subjected to experimental validation.  相似文献   

9.
The present study was to illustrate the agonistic property of arjungenin and arjunic acid towards farnesoid X receptor protein (FXR).The pharmacokinetic properties like molecular interactions, absorption, distribution, metabolism, elimination and toxicity (ADMET) of the ligands were checked through in-silico studies. Protein-ligand docking was carried out using autodock software. Molecular docking analysis confirmed strong binding energy and interaction of arjungenin and arjunic acid with the target protein and the ADMET profiles identified for both compounds were promising.Further in vitro studies were performed in 3T3-L1 adipocyte to verify the agonistic property of arjungenin and arjunic acid. Oil red O staining was done to check differentiation induction. Adiponectin, leptin, triglycerides and total cholesterol levels were quantified. The mRNA expression of FXR, Cyp7a1, PPAR-γ and SREBP-1c were quantified using fluorescent real-time PCR. Cytotoxicity assay was confirmed that up to 150 μM concentration there is no significant cell death on treatment with arjunic acid and arjungenin. Treatment with arjungenin and arjunic acid confirms increased differentiation of the cells with significant (P < 0.05) increase in adiponectin (118.07% and 132.92%) and leptin (133.52% and 149.74%) protein levels compared to the negative control group. After treatment with arjungenin and arjunic acid in 3T3-L1 preadipocytes the mRNA expression of FXR, PPAR-γ and SREBP-1c were significantly (P < 0.01) increased and cyp7a1 was significantly (P < 0.01) decreased when compared with the negative control group. Overall, our results suggest that arjungenin and arjunic acid acts as an FXR agonist and may be useful for rational therapeutic strategies as a novel drug to treat cholesterol mediated metabolic syndrome and insulin resistance.  相似文献   

10.
High Mobility Group Box 1 (HMGB1) protein, a potential therapeutic target, binds bent DNAs structure-specifically. Here we report on a crucial structural feature of the bent DNA required for strong binding to HMGB1. NMR structures of two bent DNA oligomers, only one of which binds strongly to HMGB1, revealed that the presence of a pocket structure on the minor groove is crucial for strong binding through penetration of a phenylalanine residue.  相似文献   

11.
The potential biomedical application of carbon nanotubes (CNTs) pertinent to drug delivery is highly manifested considering the remarkable electronic and structural properties exhibited by CNT. To simulate the interaction of nanomaterials with biomolecular systems, we have performed density functional calculations on the interaction of pyrazinamide (PZA) drug with functionalized single-wall CNT (fSWCNT) as a function of nanotube chirality and length using two different approaches of covalent functionalization, followed by docking simulation of fSWCNT with pncA protein. The functionalization of pristine SWCNT facilitates in enhancing the reactivity of the nanotubes and formation of such type of nanotube-drug conjugate is thermodynamically feasible. Docking studies predict the plausible binding mechanism and suggests that PZA loaded fSWCNT facilitates in the target specific binding of PZA within the protein following a lock and key mechanism. Interestingly, no major structural deformation in the protein was observed after binding with CNT and the interaction between ligand and receptor is mainly hydrophobic in nature. We anticipate that these findings may provide new routes towards the drug delivery mechanism by CNTs with long term practical implications in tuberculosis chemotherapy.  相似文献   

12.
The current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, remains a serious health hazard globally. The SARS-CoV-2 Mpro and spike proteins, as well as the human ACE2 receptor, have previously been reported as good targets for the development of new drug leads to combat COVID-19. Various ligands, including synthetic and plant-derived small molecules, can interact with the aforementioned proteins. In this study, we investigated the interaction of eight phytochemicals, from selected medicinal plants (Aegle marmelos, Azadirachta indica, and Ocimum sanctum) commonly used in Indian traditional medicine, with SARS-CoV-2 Mpro (PDBID: 6LU7), SARS-CoV-2S spike protein (PDB ID: 6M0J) and the human ACE2 receptor (PDB ID: 6M18). All compounds were subjected to density functional theory (DFT) and frontier molecular orbitals (FMO) analysis to determine their geometry, and key electronic and energetic properties. Upon examining the interactions of the phytochemicals with the human ACE2 receptor and the SARS-CoV-2 Mpro, spike protein targets, two compounds (C-5 and C-8) were identified as the best binding ligands. These were further examined in MD simulation studies to determine the stability of the ligand–protein interactions. QSAR, pharmacokinetic and drug-likeness properties studies revealed that C-5 may be the best candidate to serve as a template for the design and development of new drugs to combat COVID-19.  相似文献   

13.
We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand–protein complex resulting from QRFF–MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand–protein binding is dominated by non-directional interactions.  相似文献   

14.
The iridoid compounds in traditional Chinese medicine play a prominent role in their antiviral effects. We previously reported the anti-inflammatory effect of new iridoids from the aerial parts of Morinda officinalis. Nevertheless, several open questions remain to explore the other biological functions of these new iridoid compounds. Herpes simplex virus-1 (HSV-1) is one of the most prevalent pathogens in human beings worldwide and due to limited therapies, mainly with the guanosine analog aciclovir (ACV) and other analogs, the search for new drugs with different modes of action and low toxicity becomes particularly urgent for public health. This study aimed to explore the anti-HSV-1 effects of iridoids from the aerial parts of Morinda officinalis. The dried aerial parts of Morinda officinalis were extracted with 95% ethanol and systematic separation and purification were then carried out by modern column chromatography methods such as silica gel column, RP-ODS column, Sephadex LH-20 gel column, and semi-preparative liquid phase, and the structure of these compounds were identified through the physical and chemical properties and a variety of spectral techniques. The obtained seven new iridoid compounds were screened for antiviral activity on HSV-1 through CCK8 and the cytopathic effect, and then the plaque reduction assay, the anti-fluorescence reporter virus strain replication, and RT-qPCR experiments were carried out to further evaluate the antiviral effect. Seven new iridoid compounds (officinaloside A–G) were identified from the aerial parts of Morinda officinalis, and officinaloside C showed anti-HSV-1 activity. Further functional experiments confirmed that officinaloside C has a significant inhibiting effect on HSV-1 virus plaque formation, viral gene, and protein expression, and fluorescent virus replication. Our findings suggest that officinaloside C has significant inhibitory effects on viral plaque formation, genome replication, and viral protein expression of HSV-1 which implies that officinaloside C exhibits viral activity and may be a promising treatment for HSV-1 infection.  相似文献   

15.
BackgroundMitochondrial plays a vital role in regulating obesity and related comorbidity. Targeting mitochondrial function could be a potent therapeutic approach to inhibit metabolic-related diseases like obesity, liver disease. Prolonged use of existing drug moieties demonstrated severe adverse effects.MethodsWe apply Ucp1-A-GFP immortalized reporter cell lines and HEK293T cell lines to evaluate cell viability, mitochondrial ATP production, and the in-silico model.ResultsWe found Glycyrrhizin, an HMGB1 (high mobility group box 1) inhibitor, plays a significant role in modulating mitochondrial function against obesity. At the cellular level, the adipocytes treated with Glycyrrhizin have increased mitochondrial function. Further analysis shows that compared with the control group, the cells in the treatment group contain more mitochondria. Glycyrrhizin demonstrated a nontoxic effect on the HEK293T cell line, upregulating mitochondrial DNA and reducing mitochondrial ATP production levels. In-silico study exhibited drug-protein interaction and binding side with UCP1.ConclusionGlycyrrhizin improves mitochondrial function that would be an effective drug candidate to treat metabolic diseases and obesity-related diseases. Further investigation will require both the human and animal models to reveal new insight into the mechanism against obesity, metabolic diseases or mitochondrial dysfunction-related diseases.  相似文献   

16.
Barringtonia augusta methanol extract (Ba-ME) is a folk medicine found in the wetlands of Thailand that acts through an anti-inflammatory mechanism that is not understood fully. Here, we examine how the methanol extract of Barringtonia augusta (B. augusta) can suppress the activator protein 1 (AP-1) signaling pathway and study the activities of Ba-ME in the lipopolysaccharide (LPS)-treated RAW264.7 macrophage cell line and an LPS-induced peritonitis mouse model. Non-toxic concentrations of Ba-ME downregulated the mRNA expression of cytokines, such as cyclooxygenase and chemokine ligand 12, in LPS-stimulated RAW264.7 cells. Transfection experiments with the AP-1-Luc construct, HEK293T cells, and luciferase assays were used to assess whether Ba-ME suppressed the AP-1 functional activation. A Western blot assay confirmed that C-Jun N-terminal kinase is a direct pharmacological target of Ba-ME action. The anti-inflammatory effect of Ba-ME, which functions by β-activated kinase 1 (TAK1) inhibition, was confirmed by using an overexpression strategy and a cellular thermal shift assay. In vivo experiments in a mouse model of LPS-induced peritonitis showed the anti-inflammatory effect of Ba-ME on LPS-stimulated macrophages and acute inflammatory mouse models. We conclude that Ba-ME is a promising anti-inflammatory drug targeting TAK1 in the AP-1 pathway.  相似文献   

17.
For the first time, the tautomeric pairs of clusianone and 7-epi-clusianone were isolated from the same source, Clusia torresii fruits. An extensive NMR spectroscopic study is described to establish 1H and 13C chemical shift assignments and the C-7 relative configuration of these epimers and to clarify contradictory NMR spectroscopic data previously reported. Quantum mechanical computations than pointed out the relationship between indirect coupling constants and the equilibrium between the B-ring chair and twist-boat forms of the bicyclo-[3.3.1.]-nonane system. Clusianone, 7-epi-clusianone and polyisoprenylated benzophenones 18,19-dihydroxyclusianone, propolone A and nemorosone were screened for their activity against HIV infection in C8166 cells. All compounds inhibited infection with selectivity index values ranging from 2.25 to 15.6. Only clusianone derivatives inhibited infection by binding to viral protein gp120 and prevented its interaction with cellular receptor CD4 as detected by ELISA using recombinant proteins.  相似文献   

18.
The core of Cyclolinopeptide A (CLA, cyclo(LIILVPPFF)), responsible for its high immunosuppressive activity, contains a Pro-Pro-Phe-Phe sequence. A newly synthesized cyclic tetrapeptide, cyclo(Pro-Pro-β3-HoPhe-Phe) (denoted as 4B8M) bearing the active sequence of CLA, was recently shown to exhibit a wide array of anti-inflammatory properties in mouse models. In this investigation, we demonstrate that the peptide significantly inhibits the replication of human adenovirus C serotype 5 (HAdV-5) and Herpes simplex virus type-1 (HSV-1) in epithelial lung cell line A-549, applying Cidofovir and Acyclovir as reference drugs. Based on a previously established mechanism of its action, we propose that the peptide may inhibit virus replication by the induction of PGE2 acting via EP2/EP4 receptors in epithelial cells. In summary, we reveal a new, antiviral property of this anti-inflammatory peptide.  相似文献   

19.
New modalities such as cyclic peptides are attractive structures to inhibit challenging targets. The interaction between LSD1 and CoREST1 is required for histone demethylation and represents an attractive therapeutic target. The large interaction surface between these two proteins was analyzed by virtual alanine scanning using DrugScore PPI and a cluster of hot-spot residues was identified on CoREST1. The cluster was converted into a series of cyclic peptides and the inhibitory potency was optimized by stereochemical inversion at one of the amino acids alpha carbons combined with modification of amino acid side chains. Active peptides were further studied by variable temperature 1H NMR and docking to evaluate the effect of conformation on binding. Potent inhibitors of the challenging PPI were obtained and will allow future optimization into more druglike structures.  相似文献   

20.
Two of each diastereomers of the C-1-C-10 and C-17-C-29 segments of amphidinolide C (1) were synthesized. Comparing the 1H NMR chemical shifts of its MTPA esters with those of linear methyl ester of 1, the absolute configurations at C-7, C-8, C-20, C-23, and C-24 in amphidinolide C (1) were confirmed to be all R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号