首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Applied Mathematical Modelling》2014,38(21-22):5022-5032
The paper explores the impacts of cross-diffusion on the formation of spatial patterns in a ratio-dependent predator–prey system with zero-flux boundary conditions. Our results show that under certain conditions, cross-diffusion can trigger the emergence of spatial patterns which is however impossible under the same conditions when cross-diffusion is absent. We give a rigorous proof that the model has at least one spatially heterogenous steady state by means of the Leray–Schauder degree theory. In addition, numerical simulations are performed to visualize the complex spatial patterns.  相似文献   

2.
In this paper, a ratio-dependent predator–prey model with time delay is investigated. We first consider the local stability of a positive equilibrium and the existence of Hopf bifurcations. By using the normal form theory and center manifold reduction, we derive explicit formulae which determine the stability, direction and other properties of bifurcating periodic solutions. Finally, we consider the effect of impulses on the dynamics of the above time-delayed population model. Numerical simulations show that the system with constant periodic impulsive perturbations admits rich complex dynamic, such as periodic doubling cascade and chaos.  相似文献   

3.
This paper is concerned with a diffusive Holling–Tanner predator–prey model subject to homogeneous Neumann boundary condition. By choosing the ratio of intrinsic growth rates of predator to prey λ as the bifurcation parameter, we find that spatially homogeneous and non-homogeneous Hopf bifurcation occur at the positive constant steady state as λ varies. The steady state bifurcation of simple and double eigenvalues are intensively investigated. The techniques of space decomposition and the implicit function theorem are adopted to deal with the case of double eigenvalues. Our results show that this model can exhibit spatially non-homogeneous periodic and stationary patterns induced by the parameter λ. Numerical simulations are presented to illustrate our theoretical results.  相似文献   

4.
In this paper, complex dynamics of a diffusive predator–prey model is investigated, where the prey is subject to strong Allee effect and threshold harvesting. The existence and stability of nonnegative constant steady state solutions are discussed. The existence and nonexistence of nonconstant positive steady state solutions are analyzed to identify the ranges of parameters of pattern formation. Spatially homogeneous and nonhomogeneous Hopf bifurcation and discontinuous Hopf bifurcation are proved. These results show that the introduction of strong Allee effect and threshold harvesting increases the system spatiotemporal complexity. Finally, numerical simulations are presented to validate the theoretical results.  相似文献   

5.
This paper deals with the existence and nonexistence of nonconstant positive steady-state solutions to a ratio-dependent predator–prey model with diffusion and with the homogeneous Neumann boundary condition. We demonstrate that there exists a0(b) satisfying 0<a0(b)<m1 for 0<b<m1, such that if 0<b<m1 and a0(b)<a<m1, then the diffusion can create nonconstant positive steady-state solutions; whereas the diffusion cannot do provided a>m1.  相似文献   

6.
This paper considers a diffusive predator–prey model, in which there is a ratio-dependent functional response with Holling III type. We establish some sufficient conditions for the ultimate boundedness of solutions and permanence of this system. The existence of a unique globally stable periodic solution is also presented.  相似文献   

7.
The paper is concerned with a diffusive prey–predator model subject to the homogeneous Neumann boundary condition, which models the trophic intersections of three levels. We will prove that under certain assumptions, even though the unique positive constant steady state is globally asymptotically stable for the dynamics with diffusion, the non-constant positive steady state can exist due to the emergence of cross-diffusion. We demonstrate that the cross-diffusion can create stationary pattern. Moreover, we treat the cross-diffusion parameter as a bifurcation parameter and discuss the existence of non-constant positive solutions to the system with cross-diffusion.  相似文献   

8.
This article discusses a predator–prey system with predator saturation and competition functional response. The local stability, existence of a Hopf bifurcation at the coexistence equilibrium and stability of bifurcating periodic solutions are obtained in the absence of diffusion. Further, we discuss the diffusion-driven instability, Hopf bifurcation for corresponding diffusion system with zero flux boundary condition and Turing instability region regarding the parameters are established. Finally, numerical simulations supporting the theoretical analysis are also included.  相似文献   

9.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

10.
In this work we examine a Lotka–Volterra model with diffusion describing the dynamics of multiple interacting prey and predator species. We show that the solution exists, and is unique, bounded, nonnegative, and globally defined. We also prove the non-existence of nonconstant steady state solutions if certain conditions are satisfied. For the particular case of two prey (e.g., engineered and native, respectively) and one common predator species, by performing a linear stability analysis about the initial native-dominant steady state, we determine under which conditions the engineered species invasion succeeds.  相似文献   

11.
12.
In this paper, a stage-structured predator–prey model is proposed and analyzed to study how the type of refuges used by prey population influences the dynamic behavior of the model. Two types of refuges: those that protect a fixed number of prey and those that protect a constant proportion of prey are considered. Mathematical analyses with regard to positivity, boundedness, equilibria and their stabilities, and bifurcation are carried out. Persistence condition which brings out the useful relationship between prey refuge parameter and maturation time delay is established. Comparing the conclusions obtained from analyzing properties of two types of refuges using by prey, we observe that value of maturation time at which the prey population and hence predator population go extinct is greater in case of refuges which protect a constant proportion of prey.  相似文献   

13.
In this paper, we analyze the spatial pattern of a predator–prey system. We get the critical line of Hopf and Turing bifurcation in a spatial domain. In particular, the exact Turing domain is given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns, which shows that it is useful to use the reaction–diffusion model to reveal the spatial dynamics in the real world.  相似文献   

14.
To understand the spreading and interaction of prey and predator, in this paper we study the dynamics of the diffusive Lotka–Volterra type prey–predator model with different free boundaries. These two free boundaries, which may intersect each other as time evolves, are used to describe the spreading of prey and predator. We investigate the existence and uniqueness, regularity and uniform estimates, and long time behaviors of global solution. Some sufficient conditions for spreading and vanishing are established. When spreading occurs, we provide the more accurate limits of (u,v) as t, and give some estimates of asymptotic spreading speeds of u,v and asymptotic speeds of g,h. Some realistic and significant spreading phenomena are found.  相似文献   

15.
Effects of periodic and Neumann boundary conditions on a nonlocal prey–predator model are investigated. Two types of kernel functions with finite supports are used to characterize the nonlocal interactions. These kernel functions are modified to handle the Neumann boundary condition. Numerical techniques to find the Turing and spatial-Hopf thresholds for Neumann boundary condition are also described. For a fixed range of nonlocal interaction with a given kernel function, Turing bifurcation curves corresponding to both the boundary conditions are close to each other. The same is true for the spatial-Hopf bifurcation curves too. However, the nonlinear solutions inside the Turing domain as well as spatial-Hopf domain depend on the boundary condition. Thus, boundary conditions play important roles in a nonlocal model of prey-predator interaction.  相似文献   

16.
A delayed ratio-dependent predator–prey model with non-monotone functional response is investigated in this paper. Some new and interesting sufficient conditions are obtained for the global existence of multiple positive periodic solutions of the ratio-dependent model. Our method is based on Mawhin’s coincidence degree and some estimation techniques for the a priori bounds of unknown solutions to the equation Lx = λNx. An example is represented to illustrate the feasibility of our main result.  相似文献   

17.
In this paper, we investigate Hopf bifurcation and center stability of a predator–prey biological economic model. By employing the local parameterization method, Hopf bifurcation theory and the formal series method, we obtain some testable results on these issues. The economic profit is chosen as a positive bifurcation parameter here. It shows that a phenomenon of Hopf bifurcation occurs as the economic profit increases beyond a certain threshold. Besides, we also find that the center of the biological economic model is always unstable. Finally, some numerical simulations are given to illustrate the effectiveness of our results.  相似文献   

18.
19.
Optimal harvesting of a stochastic predator–prey model is considered in this paper. Sufficient and necessary criteria for the existence of optimal harvesting strategy are obtained. At the same time, the optimal harvest effort and the maximum of sustainable yield are given.  相似文献   

20.
In this paper, we propose a bioeconomic differential algebraic predator–prey model with Holling type II functional response and nonlinear prey harvesting. As the nonlinear prey harvesting is introduced, the proposed model displays a complex dynamics in the predator–prey plane. Taking into account of the economic factor, our predator–prey system is established by bioeconomic differential algebraic equations. The effect of economic profit on the proposed model is analyzed by viewing it as a bifurcation parameter. By jointly using the normal form of differential algebraic models and the bifurcation theory, the stability and bifurcations (singularity induced bifurcation, Hopf bifurcation) are discussed. These results obtained here reveal richer dynamics of the bioeconomic differential algebraic predator–prey model with nonlinear prey harvesting, and suggest a guidance for harvesting in the practical word. Finally, numerical simulations are given to demonstrate the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号