首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

2.
通过分子对接和三维定量构效关系(3D-QSAR)两种方法来确定两类马来酰胺类的糖原合成酶激酶-3β(GSK-3β)抑制剂的结合方式. 首先, 用分子对接确定抑制剂与GSK-3β结合模式及其相互作用; 然后用比较分子力场分析法(CoMFA)与比较分子相似性指数分析法(CoMSIA)对48个化合物做三维定量构效关系的分析. 两种方法得出的交互验证回归系数分别为0.669(CoMFA)和0.683(CoMSIA), 证明该模型具有很好的统计相关性, 同时也说明该模型具有较高的预测能力.根据该模型提供的信息, 设计出9个预测活性较好的分子.  相似文献   

3.
The p38 protein kinase is a serine–threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r 2 (q 2) value of 0.516 and conventional r 2 of 0.950, while the best CoMSIA model yielded a q 2 of 0.455 and r 2 of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein–inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.  相似文献   

4.
Microtubules are tube-shaped, filamentous and cytoskeletal proteins that are essential in all eukaryotic cells. Microtubule is an attractive and promising target for anticancer agents. In this study, three-dimensional quantitative structure activity relationships (3D-QSAR) including comparative molecular field analysis, CoMFA, and comparative molecular similarity indices analysis, CoMSIA, were performed on a set of 45 (E)-N-Aryl-2-ethene-sulfonamide analogues as microtubule-targeted anti-prostate cancer agents. Automated grid potential analysis, AutoGPA module in Molecular Operating Environment 2009.10 (MOE) as a new 3D-QSAR approach with the pharmacophore-based alignment was carried out on the same dataset. AutoGPA-based 3D-QSAR model yielded better prediction parameters than CoMFA and CoMSIA. Based on the contour maps generated from the models, some key features were identified in (E)-N-Aryl-2-arylethene-sulfonamide analogues that were responsible for the anti-cancer activity. Virtual screening was performed based on pharmacophore modeling and molecular docking to identify the new inhibitors from ZINC database. Seven top ranked compounds were found based on Gold score fitness function. In silico ADMET studies were performed on compounds retrieved from virtual screening in compliance with the standard ranges.  相似文献   

5.
Transthyretin (TTR), a plasma protein with a tetramer structure, could form amyloid fibril associated with several human diseases through the dissociation of tetramer and the misfolding of monomer. These amyloidogenesis can be inhibited by small molecules which bind to the central channel of TTR. A number of small molecules like 2-arylbenzoxazoles (ABZ) analogues are proposed as promising therapeutic strategy to treat amyloidosis. In this work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies were performed on series of 2-arylbenzoxazoles (ABZ) and linker-Y analogues to investigate the inhibitory activities of TTR amyloidogenesis at atomic level. Significant correlation coefficients for ABZ series (CoMFA, r 2 = 0.877, q 2 = 0.431; CoMSIA, r 2 = 0.836, q 2 = 0.447) and those for linker-Y series (CoMFA, r 2 = 0.828, q 2 = 0.522; CoMSIA, r 2 = 0.800, q 2 = 0.493) were obtained, and the generated models were validated using test sets. In addition, docking studies on 6 compounds binding to TTR were performed to analyze the forward or reverse binding mode and interactions between molecules and TTR. These results from 3D-QSAR and docking studies have great significance for designing novel TTR amyloidogenesis inhibitors in the future.  相似文献   

6.
通过分子对接和三维定量构效关系(3D-QSAR)两种方法来确定两类马来酰胺类的糖原合成酶激酶-3β(GSK-3β)抑制剂的结合方式.首先,用分子对接确定抑制剂与GSK-3β的结合模式及其相互作用;然后用比较分子力场分析法(CoMFA)与比较分子相似性指数分析法(CoMSIA)对48个化合物做三维定量构效关系的分析.两种方法得出的交互验证回归系数分别为0.669(CoMFA)和0.683(CoMSIA),证明该模型具有很好的统计相关性,同时也说明该模型具有较高的预测能力.根据该模型提供的信息,设计出9个预测性较好的分子.  相似文献   

7.
Focal adhesion kinase (FAK) is a promising target for developing more effective anticancer drugs. To better understand the structure-activity relationships and mechanism of actions of FAK inhibitors, a molecular modeling study using 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy analysis were conducted. Two types of satisfactory 3D-QSAR models were generated, comprising the CoMFA model (R2cv = 0.528, R2pred = 0.7557) and CoMSIA model (R2cv = 0.757, R2pred = 0.8362), for predicting the inhibitory activities of novel inhibitors. The derived contour maps indicate structural characteristics for substituents on the template. Molecular docking, molecular dynamic simulations and binding free energy calculations further reveal that the binding of inhibitors to FAK is mainly contributed from hydrophobic, electrostatic and hydrogen bonding interactions. In addition, some key residues (Arg14, Glu88, Cys90, Arg138, Asn139, Leu141, and Leu155) responsible for ligand-receptor binding are highlighted. All structural information obtained from 3D-QSAR models and molecular dynamics is consist with the available experimental activities. All the results will facilitate the optimization of this series of FAK inhibitors with higher inhibitory activities.  相似文献   

8.
Nowadays, different approaches have been pursued with the intent to develop sulfonamide-like carbonic anhydrase inhibitors that possess better selectivity profiles toward the different human isoforms of the enzyme. Here, we used conventional 3D-QSAR methods, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA, to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models for benzenesulfonamide derivatives as human carbonic anhydrase (hCA) II/IX inhibitors. The theoretical models had good reliability (R2>0.75) and predictability (Q2>0.55), and the contour maps could graphically present the contributions of the force fields for activity and identify the structural divergence between human carbonic anhydrase II inhibitors and human carbonic anhydrase IX inhibitors. Consequently, we explored the selectivity of inhibitor for human carbonic anhydrase II and IX through molecular docking, and the difference of activity coincides with the potential binding mode well. According to the results of the predicted values and the molecule docking, we found that the inhibitors published in the literature had stronger inhibition on the hCA IX; based on the theoretical models, we designed seven new compounds with good potential activity and reasonably good ADMET profile, which could selectively inhibit hCA IX. Molecular Dynamics Simulation showed that newly-designed compound D7 had good selectivity on hCA IX. The findings from 3D-QSAR and docking studies maybe helpful in the rational drug design of isoform-selective inhibitors.  相似文献   

9.

Xanthine oxidase, a complex molybdoflavoprotein, catalyzes the hydroxylation of xanthine to uric acid, which has emerged as an important target for gout and hyperuricemia. In this work, a combination of molecular modeling methods was performed on a series of febuxostat analogues as xanthine oxidase inhibitors to establish molecular models for new drug design, including three-dimensional quantitative structure–activity relationship, topomer comparative molecular field analysis (CoMFA), molecular docking and molecular dynamic simulations. The optimal CoMFA model yielded a leave-one-out correlation coefficient (q2) of 0.841 and a non-validated correlation coefficient (r2) of 0.985. The respective q2 and r2 of the best comparative molecular similarity indices analysis (CoMSIA) model were 0.794 and 0.972, respectively. The Topomer CoMFA model provided a q2 of 0.915 and an r2 of 0.977. 3D contour maps generated from CoMFA and CoMSIA have identified several key features responsible for the inhibition activity. Molecular modeling was taken to further elucidate the proposed binding conformations of the inhibitors to the protein. The obtained results can be served as a useful guideline for designing novel febuxostat derivatives with improved activity against xanthine oxidase.

  相似文献   

10.
BackgroundSrc homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) as a major phosphatase would affect the development of tumors by regulating several cellular processes, and is a significant potential target for cancer treatment.MethodsIn the present work, a series of pyridine derivatives possessing a wide range of inhibitory activity was employed to investigate the structural requirements by developing three dimensional quantitative structure–activity relationship (3D-QSAR) models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The results show that CoMFA (R2cv = 0.646, R2pred = 0.5587) and CoMSIA (R2cv = 0.777, R2pred = 0.7131) have excellent stability and predictability. The relationship between the inhibitory activity and structure of the inhibitors was analyzed by the derived contour maps. Furthermore, the QSAR models were validated by molecular docking and molecular dynamics simulations, which were also applied to reveal the potential molecular mechanism of these inhibitors.FindingsIt was found that Arg110, Asn216, Thr218, Thr252 and Pro490 play a crucial role in stabilizing the inhibitors. Additionally, MM/PBSA calculations provided the binding free energy were also conducted to explain the discrepancy of binding activities. Overall, the outcomes of this work could provide useful information and theoretical guidance for the development of novel and potent SHP2 inhibitors.  相似文献   

11.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a promising target for developing novel anticancer drugs. In order to understand the structure-activity correlation of indolinone-based PDK1 inhibitors, we have carried out a combined molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling study. The study has resulted in two types of satisfactory 3D-QSAR models, including the CoMFA model (r(2)=0.907; q(2)=0.737) and CoMSIA model (r(2)=0.991; q(2)=0.824), for predicting the biological activity of new compounds. The detailed microscopic structures of PDK1 binding with inhibitors have been studied by molecular docking. We have also developed docking-based 3D-QSAR models (CoMFA with q(2)=0.729; CoMSIA with q(2)=0.79). The contour maps obtained from the 3D-QSAR models in combination with the docked binding structures help to better interpret the structure-activity relationship. All of the structural insights obtained from both the 3D-QSAR contour maps and molecular docking are consistent with the available experimental activity data. This is the first report on 3D-QSAR modeling of PDK1 inhibitors. The satisfactory results strongly suggest that the developed 3D-QSAR models and the obtained PDK1-inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and in future drug design.  相似文献   

12.
In order to investigate the inhibiting mechanism and obtain some helpful information for de-signing functional inhibitors against Wee1, three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies have been performed on 45 pyrido[2,3-d] pyrim-idine derivatives acting as Wee1 inhibitors. Two optimal 3D-QSAR models with significant statistical quality and satisfactory predictive ability were established, including the CoMFA model (q2=0.707, R2=0.964) and CoMSIA model (q2=0.645, R2=0.972). The external val-idation indicated that both CoMFA and CoMSIA models were quite robust and had high predictive power with the predictive correlation coefficient values of 0.707 and 0.794, essen-tial parameter r2m values of 0.792 and 0.826, the leave-one-out r2m(LOO) values of 0.781 and 0.809, r2m(overall) values of 0.787 and 0.810, respectively. Moreover, the appropriate binding orientations and conformations of these compounds interacting with Wee1 were revealed by the docking studies. Based on the CoMFA and CoMSIA contour maps and docking analyses, several key structural requirements of these compounds responsible for inhibitory activity were identified as follows: simultaneously introducing high electropositive groups to the sub-stituents R1 and R5 may increase the activity, the substituent R2 should be smaller bulky and higher electronegative, moderate-size and strong electron-withdrawing groups for the substituent R3 is advantageous to the activity, but the substituent X should be medium-size and hydrophilic. These theoretical results help to understand the action mechanism and design novel potential Wee1 inhibitors.  相似文献   

13.
The binding affinity of a series of benzhydrylpiperazine δ opioid receptor agonists were pooled and evaluated by using 3D-QSAR and homology modeling/molecular docking methods. Ligand-based CoMFA and CoMSIA 3D-QSAR analyses with 46 compounds were performed on benzhydrylpiperazine analogues by taking the most active compound BW373U86 as the template. The models were generated successfully with q2 value of 0.508 and r2 value of 0.964 for CoMFA, and q2 value of 0.530 and r2 value of 0.927 for CoMSIA. The predictive capabilities of the two models were validated on the test set with R2pred value of 0.720 and 0.814, respectively. The CoMSIA model appeared to work better in this case. A homology model of active form of δ opioid receptor was established by Swiss-Model using a reported crystal structure of active μ opioid receptor as a template, and was further optimized using nanosecond scale molecular dynamics simulation. The most active compound BW373U86 was docked to the active site of δ opioid receptor and the lowest energy binding pose was then used to identify binding residues such as s Gln105, Lys108, Leu125, Asp128, Tyr129, Leu200, Met132, Met199, Lys214, Trp274, Ile277, Ile304 and Tyr308. The docking and 3D-QSAR results showed that hydrogen bond and hydrophobic interactions played major roles in ligand-receptor interactions. Our results highlight that an approach combining structure-based homology modeling/molecular docking and ligand-based 3D-QSAR methods could be useful in designing of new opioid receptor agonists.  相似文献   

14.
Enhancer of Zeste homolog 2(EZH2) is closely correlated with malignant tumor and regarded as a promising target to treat B-cell lymphoma. In our research, the molecular docking and three-dimensional quantitative structure-activity relationships(3D-QSAR) studies were performed on a series of pyridone-based EZH2 compounds. Molecular docking allowed us to study the critical interactions at the binding site of EZH2 protein with inhibitors and identify the practical conformations of ligands in binding pocket. Moreover, the docking-based alignment was applied to derive the reliable 3D-QSAR models. Comparative molecular field analysis(CoMFA) and comparative molecular similarity indices analysis(CoMSIA) provided available ability of visualization. All the derived 3D-QSAR models were considered to be statistically significant with respect to the internal and external validation parameters. For the CoMFA model, q~2 = 0.649, r~2 = 0.961 and r~2 pred = 0.877. For the CoMSIA model, q~2 = 0.733, r~2 = 0.980 and r~2 pred = 0.848. With the above arguments, we extracted the correlation between the biological activity and structure. Based on the binding interaction and 3D contour maps, several new potential inhibitors with higher biological activity predicted were designed, which still awaited experimental validation. These theoretical conclusions could be helpful for further research and exploring potential EZH2 inhibitors.  相似文献   

15.
《印度化学会志》2021,98(11):100183
A new series of 4- methyl quinazoline derivatives was synthesized and its anti-cancer activity was assessed. It was revealed that its compounds have potent inhibition on related phosphoinositide 3-kinases alpha (PI3Kα). In this study, the three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking approaches were performed on a series of 4-methyl quinazoline derivatives with PI3Kα inhibitors. The 3D-QSAR study was applied using Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods, which gave the cross-validation coefficient (Q2) values of 0.850 and 0.92, the determination coefficient (R2) values of 0.998 and 0.987, and the standard error of the estimate (SEE) values of 0.017 and 0.105, respectively. The acceptable values of determination coefficient (R2 test) to CoMFA and CoMSIA respectively corresponding to values of 0.793 and 0.804 utilizing a test set of seven molecules prove the high predictive ability of this model. Using AutoDock tools, Molecular docking analysis was utilized to validate 3D-QSAR methods and to explain the binding site interactions and energy between the most active ligands and the PI3Kα (PDB ID: 4JPS) receptor. Based on these results, a novel series of 4- methyl quinazoline derivatives was predicted.  相似文献   

16.
17.
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).  相似文献   

18.
Three-dimension quantitative structure activity relationship (3D-QSAR) was one of the major statistical techniques to investigate the correlation of biological activity with structural properties of candidate molecules, and the accuracy of statistic greatly depended on molecular alignment methodology. Exhaustive conformational search and successful conformational superposition could extremely improve the predictive accuracy of QSAR modeling. In this work, we proposed a solution to optimize QSAR prediction by multiple-conformational alignment methods, with a set of 40 flexible PTP1B inhibitors as case study. Three different molecular alignment methods were used for the development of 3D-QSAR models listed as following: (1) docking-based alignment (DBA); (2) pharmacophore-based alignment (PBA) and (3) co-crystallized conformer-based alignment (CCBA). Among these three alignments, it was indicated that the CCBA was the best and the fastest strategy in 3D-QSAR development, with the square correlation coefficient (r2) and cross-validated squared correlation coefficient (q2) of comparative molecular field analysis (CoMFA) were 0.992 and 0.694; the r2 and q2 of comparative molecular similarity indices analysis (CoMSIA) were 0.972 and 0.603, respectively. The alignment methodologies used here not only generated a robust QSAR model with useful molecular field contour maps for designing novel PTP1B inhibitors, but also provided a solution for constructing accurate 3D-QSAR model for various disease targets. Undoubtedly, such attempt in QSAR analysis would greatly help us to understand essential structural features of inhibitors required by its target, and so as to discover more promising chemical derivatives.  相似文献   

19.
In this study, a combination of virtual screening methods were utilized to identify novel potential indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. A series of IDO1 potential inhibitors were identified by a combination of following steps: Lipinski's Rule of Five, Veber rules filter, molecular docking, HipHop pharmacophores, 3D-Quantitative structure activity relationship (3D-QSAR) studies and Pan-assay Interference Compounds (PAINS) filter. Three known categories of IDO1 inhibitors were used to constructed pharmacophores and 3D-QSAR models. Four point pharmacophores (RHDA) of IDO1 inhibitors were generated from the training set. The 3D-QSAR models were obtained using partial least squares (PLS) analyze based on the docking conformation alignment from the training set. The leave-one-out correlation (q2) and non-cross-validated correlation coefficient (r2pred) of the best CoMFA model were 0.601 and 0.546, and the ones from the best CoMSIA model were 0.506 and 0.541, respectively. Six hits from Specs database were identified and analyzed to confirm their binding modes and key interactions to the amino acid residues in the protein. This work may provide novel backbones for new generation of inhibitors of IDO1.  相似文献   

20.
用比较分子场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA)研究了38个五元杂环并嘧啶衍生物类胸苷酸合成酶抑制剂的三维定量构效关系(3D-QSAR), 建立了相关预测模型. CoMFA和CoMSIA模型的交互验证相关系数q2分别为0.662和0.672、非交互验证相关系数R2分别为0.921和0.884、外部交互验证相关系数Qext2分别为0.85和0.81. 分子对接得到的结合模式与三维定量构效关系得到的结果一致. 结果表明这两种模型都具有良好的预测能力, 可应用于指导化合物的设计和结构修饰, 为进一步设计新型胸苷酸合成酶抑制剂提供了理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号