首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To discover novel inhibitors that target the influenza polymerase basic protein 2 (PB2) cap-binding domain (CBD), commercial ChemBridge compound libraries containing 384,796 compounds were screened using a cascade docking of LibDock–LigandFit–GOLD, and 60 compounds were selected for testing with cytopathic effect (CPE) inhibition assays and surface plasmon resonance (SPR) assay. Ten compounds were identified to rescue cells from H1N1 virus-mediated death at non-cytotoxic concentrations with EC50 values ranging from 0.30 to 67.65 μM and could bind to the PB2 CBD of H1N1 with Kd values ranging from 0.21 to 6.77 μM. Among these, four compounds (11D4, 12C5, 21A5, and 21B1) showed inhibition of a broad spectrum of influenza virus strains, including oseltamivir-resistant ones, the PR/8-R292K mutant (H1N1, recombinant oseltamivir-resistant strain), the PR/8-I38T mutant (H1N1, recombinant baloxavir-resistant strain), and the influenza B/Lee/40 virus strain. These compounds have novel chemical scaffolds and relatively small molecular weights and are suitable for optimization as lead compounds. Based on sequence and structure comparisons of PB2 CBDs of various influenza virus subtypes, we propose that the Phe323/Gln325, Asn429/Ser431, and Arg355/Gly357 mutations, particularly the Arg355/Gly357 mutation, have a marked impact on the selectivities of PB2 CBD-targeted inhibitors of influenza A and influenza B.  相似文献   

2.
In the novel SARS-CoV-2 (COVID-19) as a global emergency event, the main reason of the cardiac injury from COVID-19 is angiotensin-converting enzyme 2 (ACE2) targeting in SARS-CoV-2 infection. The inhibition of ACE2 induces an increase in the angiotensin II (Ang II) and the angiotensin II receptor type 1 (AT1R) leading to impaired cardiac function or cardiac inflammatory responses. The ethyl acetate fraction of Potentilla reptans L. root can rescue heart dysfunction, oxidative stress, cardiac arrhythmias and apoptosis. Therefore, isolated components of P. reptans evaluated to identify natural anti-SARS-CoV-2 agents via molecular docking.In silico molecular docking study were carried out using the Auto Dock software on the isolated compounds of Potentilla reptans root. The protein targets of selective ACE and others obtained from Protein Data Bank (PDB). The best binding pose between amino acid residues involved in active site of the targets and compounds was discovered via molecular docking. Furthermore, ADMET properties of the compounds were evaluated.The triterpenoids of P. reptans showed more ACE inhibitory potential than catechin in both domains. They were selective on the nACE domain, especially compound 5. Also, the compound 5 & 6 had the highest binding affinity toward active site of nACE, cACE, AT1R, ACE2, and TNF-α receptors. Meanwhile, compound 3 showed more activity to inhibit TXA2. Drug likeness and ADMET analysis showed that the compounds passed the criteria of drug likeness and Lipinski rules. The current study depicted that P. reptans root showed cardioprotective effect in COVID-19 infection and manipulation of angiotensin II-induced side effects.  相似文献   

3.
Sofosbuvir is the first approved direct-acting antiviral (DAA) agent that inhibits the HCV NS5B polymerase, resulting in chain termination. The molecular models of the 2′-dihalo ribonucleotides used were based on experimental biological studies of HCV polymerase inhibitors. They were modeled within HCV GT1a and GT1b to understand the structure–activity relationship (SAR) and the binding interaction of the halogen atoms at the active site of NS5B polymerase using different computational approaches. The outputs of the molecular docking studies indicated the correct binding mode of the tested compounds against the active sites in target receptors, exhibiting good binding free energies. Interestingly, the change in the substitution at the ribose sugar was found to produce a mild effect on the binding mode. In detail, increasing the hydrophobicity of the substituted moieties resulted in a better binding affinity. Furthermore, in silico ADMET investigation implied the general drug likeness of the examined derivatives. Specifically, good oral absorptions, no BBB penetration, and no CYP4502D6 inhibitions were expected. Likely, the in silico toxicity studies against several animal models showed no carcinogenicity and high predicted TD50 values. The DFT studies exhibited a bioisosteric effect between the substituents at the 2′-position and the possible steric clash between 2′-substituted nucleoside analogs and the active site in the target enzyme. Finally, compound 6 was subjected to several molecular dynamics (MD) simulations and MM-PBSA studies to examine the protein-ligand dynamic and energetic stability.  相似文献   

4.
Influenza A virus is the main cause of worldwide epidemics and annual influenza outbreaks in humans. In this study, a virtual screen was performed to identify compounds that interact with the PB2 cap-binding domain (CBD) of influenza A polymerase. A virtual screening workflow based on Glide docking was used to screen an internal database containing 8417 molecules, and then the output compounds were selected based on solubility, absorbance, and structural fingerprints. Of the 16 compounds selected for biological evaluation, six compounds were identified that rescued cells from H1N1 virus-mediated death at non-cytotoxic concentrations, with EC50 values ranging from 2.5–55.43 μM, and that could bind to the PB2 CBD of H1N1, with Kd values ranging from 0.081–1.53 μM. Molecular dynamics (MD) simulations of the docking complexes of our active compounds revealed that each compound had its own binding characteristics that differed from those of VX-787. Our active compounds have novel structures and unique binding modes with PB2 proteins, and are suitable to serve as lead compounds for the development of PB2 inhibitors. An analysis of the MD simulation also helped us to identify the dominant amino acid residues that play a key role in binding the ligand to PB2, suggesting that we should focus on increasing and enhancing the interaction between inhibitors and these major amino acids during lead compound optimization to obtain more active PB2 inhibitors.  相似文献   

5.
Influenza virus endonuclease is an attractive target for antiviral therapy in the treatment of influenza infection. The purpos e of this study is to design a novel antiviral agent with improved biological activities against the influenza virus endonuclease. In this study, chemical feature‐based 3D pharmacophore models were developed from 41 known influenza virus endonuclease inhibitors. The best quantitative pharmacohore model (Hypo 1), which consists of two hydrogen‐bond acceptors and two hydrophobic features, yields the highest correlation coefficient (R = 0.886). Hypo 1 was further validated by the cross validation method and the test set compounds. The application of this model for predicting the activities of 11 known influenza virus endonuclease inhibitors in the test set shows great success. The correlation coefficient of 0.942 and a cross validation of 95;% confidence level prove that this model is reliable in identifying structurally diverse compounds for influenza virus endonuclease inhibition. The most active compound (compound 1) from the training set was docked into the active site of the influenza virus endonuclease as an additional verification that the pharmacophore model is accurate. The docked conformation showed important hydrogen bond interactions between the compound and two amino acids, Lys 134 and Lys 137. After validation, this model was used to screen the NCI chemical database to identify new influenza virus endonuclease inhibitors. Our study shows that the to pranking compound out of the 10 newly identified compounds using fit value ranking has an estimated activity of 0.049 μM. These newly identified lead compounds can be further experimentally validated using in vitro techniques.  相似文献   

6.
A small yet diverse xanthone library was build and computationally docked against wild type Pf-DHFR by Molegro Virtual Docker (MolDock). For analysis of results an integrated approach based on re-ranking, scaling (based on heavy atom counts), pose clustering and visual inspection was implemented. Standard methods such as self-docking (for docking), EF analysis, average rank determinations (for size normalization), and cluster quality indices (for pose clustering) were used for validation of results. Three compounds X5, X113A and X164B displayed contact footprints similar to the known inhibitors with good scores. Finally, 16 compounds were extracted from ZINC data base by similarity based screening, docking score and drug/lead likeness. Out of these 16 compounds, 11 displayed very close contact footprints to experimentally known inhibitors, indicating there potential utility in further drug discovery efforts.  相似文献   

7.
Thioredoxin reductase 1 (TrxR1) is an oxidoreductase playing the important role in the tumor cells. It is a new type of drug therapy target. Most of the existing TrxR1 inhibitors act directly covalently on the active sites. Herein, molecular docking-based virtual screening approach was used to screen inhibitors with new binding site of TrxR1 from the SPECS database. After experimental test, compound 22 was identified as the reversibility inhibitor of TrxR1 U498C mutant (It has similar structure and function to replace the wild-type TrxR1 which is difficult to express) with IC50 value of 15.31 ± 0.57 μM. The molecular docking results showed that the interaction between compound 22 and TrxR1 was centered on inactive site Trp114. Furthermore, phenazine compounds 2430 with similar structures as 22 were also screened out from our phenazine database. Compounds 2427 had longer chain structures and better inhibitory activity than compound 22, while compounds 2830 were the opposite. Compounds 2427 can be more stably bound in the protein cavity on Trp114 than compounds 2830. Then we verified amino acids centered on Trp114 can regulate TrxR1 activity by amino acids mutation. Taken together, A new inhibition site are found that can regulate TrxR1 U498C mutant activity by acting on amino acids sequence at inactive sites centered on Trp114 and can provide ideas for the discovery and research of new TrxR1 inhibitors.  相似文献   

8.
《Chemistry & biology》1996,3(2):97-104
Background: Influenza viruses use hemagglutinin (HA) arrays to bind to sialic acid moieties on the surface of cells; crosslinking of erythrocytes by this mechanism leads to hemagglutination. A number of synthetic polymers containing multiple sialic acid (Neu5Ac) groups as side chains are potent inhibitors of this process. Inhibition may be due to two mechanisms: polyvalent binding of the inhibitor's multiple Neu5Ac side chains to multiple HA sites on the viral surface, or steric stabilization of the viral particle by a layer of the adsorbed, water-swollen polymer, which prevents adhesion to the erythrocyte. The balance between these two effects is not yet known.Results: Polyacrylamides with multiple C-sialosides (PA(Neu5Ac)) were 2–20 fold more effective as inhibitors of virally mediated hemagglutination when assayed in the presence of Neu2en-NH2, a potent monomeric inhibitor of influenza neuraminidase (NA). The ability of monomeric inhibitors of NA to enhance the inhibition of hemagglutination in this assay correlated with the affinity of the monomer for NA.Conclusions: We propose that inhibitors of NA act by competing with the C-sialosides of PA(Neu5Ac) for binding to the active sites of the NA. Competitive displacement of Neu5Ac causes an expansion of the layer of polymeric gel adsorbed to the virus, enhancing its inhibitory effect. This study provides an example of synergy between two ligands directed toward the active sites of two different proteins, and reinforces the conclusion that steric stabilization is important for the activity of polyvalent inhibitors.  相似文献   

9.
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly spreading virus showing very high rates of complications and mortality. Till now, there is no effective specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an enormous range of biological activities. Since there are no available experimental techniques to examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico approach involving molecular docking, dynamics simulation, and binding free energy calculation using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds 132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120, and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able to achieve significant stability and binding free energies during molecular dynamics simulation. In addition, the highest scoring compounds were investigated for their pharmacokinetic properties and drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development for SARS-CoV-2.  相似文献   

10.
PA_C subunit from avian influenza(H5N1) viral RNA polymerase was used in this work as a target in the screening for anti-influenza agents from licorice-derived compounds.As a result,18β-glycyrrhetinic acid was suggested to be PA_C ligand by flexible docking,and was then confirmed by relaxation-edited NMR.The result of ApG primer extension assay indicated that this PA_C ligand can inhibit the polymerase activity,and thus may potentially be valuable as anti-influenza lead compound.This work validated the possibility of screening polymerase inhibitors by using PA_C as a target,and provided a starting point for the further discovery of new anti-influenza drugs.  相似文献   

11.
Although recent decades have witnessed the synthesis of 1,3,4-thiadiazoles via phosphorus POCl3-promoted cyclization reaction, simultaneous access to 2-amino-1,3,4-thiadiazole and 2-amino-1,3,4-oxadiazole analogs remains unexpected and elusive. Herein, a detailed regiocontrolled synthesis of 2-amino-1,3,4-thiadiazoles in good to high yields with good regioselectivities from readily available thiosemicarbazides using POCl3 was disclosed. Meantime, to establish a comprehensive structure–activity relationship, 2-amino-1,3,4-oxadiazole derivatives as single regioisomers were prepared via EDCI·HCl-triggered cyclization of the thiosemicarbazide intermediates. The in vitro anti-influenza assays proved that the selected compounds with the pyrazine/pyridine ring exhibited certain inhibitory activities against influenza A virus strains A/HK/68 (H3N2) and A/PR/8/34 (H1N1) in MDCK cells. Among them, N-(adamantan-1-yl)-5-(5-(azepan-1-yl)pyrazin-2-yl)-1,3,4-thiadiazol-2-amine (4j) was the most active compound, and exhibited favorable activity with EC50 values of 3.5 μM and 7.5 μM, respectively. In addition, the molecular docking results explained the reason why compound 4j had dual inhibitory activity and revealed the reasonable binding mode of this compound with the M2-S31N and M2-WT ion channels. This compound had the potential to be further developed as an anti-influenza drug.  相似文献   

12.
In this study, firstly, the pharmacophore model was established based on LAR inhibitors. ZINC database and drug-like database were screened by Hypo-1-LAR model, and the embryonic compound ZINC71414996 was obtained. Based on this compound, we designed 9 compounds. Secondly, the synthetic route of the compound was determined by consulting Reaxys and Scifinder databases, and 9 compounds (1a-1i) were synthesized by nucleophilic substitution, Suzuki reaction and so on. Meanwhile, their structures were confirmed by 1H NMR and 13C NMR. Thirdly, the Enzymatic assays was carried out, the biological evaluation of compounds 1a-1i led to the identification of a novel PTP-LAR inhibitor 1c, which displayed an IC50 value of 4.8 μM. At last, molecular dynamics simulation showed that compounds could interact strongly with the key amino acids LYS1350, LYS1352, ARG1354, TYR1355, LYS1433, ASP1435, TRP1488, ASP1490, VAL1493, SER1523, ARG1528, ARG1561, GLN1570, LYS1681, thereby inhibiting the protein activity. This study constructed the pharmacophore model of LAR protein, designed small-molecule inhibitors, conducted compound synthesis and enzyme activity screening, so as to provide a basis for searching for drug-capable lead compounds.  相似文献   

13.
Ebola virus (EBOV) causes zoonotic viral infection with a potential risk of global spread and a highly fatal effect on humans. Till date, no drug has gotten market approval for the treatment of Ebola virus disease (EVD), and this perhaps allows the use of both experimental and computational approaches in the antiviral drug discovery process. The main target of potential vaccines that are recently undergoing clinical trials is trimeric glycoprotein (GP) of the EBOV and its exact crystal structure was used in this structure based virtual screening study, with the aid of consensus scoring to select three possible hit compounds from about 36 million compounds in MCULE’s database. Amongst these three compounds, (5R)-5-[[5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl]methyl]-N-[(4-methoxyphenyl)methyl]-4,5-dihydroisoxazole-3-carboxamide (SC-2, C21H19ClN4O4) showed good features with respect to drug likeness, ligand efficiency metrics, solubility, absorption and distribution properties and non-carcinogenicity to emerge as the most promising compound that can be optimized to lead compound against the GP EBOV. The binding mode showed that SC-2 is well embedded within the trimeric chains of the GP EBOV with molecular interactions with some amino acids. The SC-2 hit compound, upon its optimization to lead, might be a good potential candidate with efficacy against the EBOV pathogen and subsequently receive necessary approval to be used as antiviral drug for the treatment of EVD.  相似文献   

14.
Since the discovery of imatinib, the first tyrosine kinase inhibitor, in 2001, targeted therapy has become mainstream of cancer therapeutics. Despite the advantages in efficacy and low side effects compared with conventional chemotherapy, the success of the targeted anticancer drugs is still limited by the drug resistance which happens due to the fact that the development of cancer is stimulated by several stimuli and therefore, defeating cancer may occur upon the inhibition of several targets. However, coadministration of multiple drugs always lead to many disadvantages including increased toxicity and less patient compliance. Therefore, the aim of research is to develop anticancer agents with multi-target action based on the modification of the chemical structure of sunitinib, a well-known multi-kinase inhibitor. A series of fifteen compounds comprising pyrrolo[2,3-d]pyrimidine and hydrazone have been designed and successfully synthesized. Among the synthesized compounds, compounds 6f, 6l and 6n inhibited the enzymatic activity of EGFR, Her2, VEGFR-2 and CDK2 kinase enzymes similar to sunitinib and the reference protein kinase inhibitors. Interestingly, remarkable results were revealed by compounds 6j and 6c that demonstrated selective VEGFR-2 inhibition activities and compound 6i that exhibited selective dual inhibition of Her2/VEGFR-2 enzymes. Further analysis revealed that compounds 6f and 6n suppressed cell cycle progression of HepG2 cells and induced early and late apoptosis. Moreover, those two compounds triggered a significant elevation in caspase 3 and Bax proapoptotic proteins and a notable reduction in Bcl-2 anti-apoptotic protein. Finally, molecular docking studies were conducted to predict the possible binding interactions of 6f and 6n with CDK2 and 6f, 6n, 6j and 6c with VEGFR-2.  相似文献   

15.
Identification of hit compounds against specific target form the starting point for a drug discovery program. A consistent decline of new chemical entities (NCEs) in recent years prompted a challenge to explore newer approaches to discover potential hit compounds that in turn can be converted into leads, and ultimately drug with desired therapeutic efficacy. The vast amount of omics and activity data available in public databases offers an opportunity to identify novel targets and their potential inhibitors. State of the art in silico methods viz., clustering of compounds, virtual screening, molecular docking, MD simulations and MMPBSA calculations were employed in a pipeline to identify potential ‘hits’ against those targets as well whose structures, as of now, could only predict through threading approaches. In the present work, we have started from scratch, amino acid sequence of target and compounds retrieved from PubChem compound database, modeled it in such a way that led to the identification of possible inhibitors of Dam1 complex subunit Ask1 of Candida albicans. We also propose a ligand based binding site determination approach. We have identified potential inhibitors of Ask1 subunit of a Dam1 complex of C. albicans, which is required to prevent precocious spindle elongation in pre-mitotic phases. The proposed scheme may aid to find virtually potential inhibitors of other unique targets against candida.  相似文献   

16.
Alzheimer’s disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aβ) aggregation and impaired synaptic transmission, which makes the associated proteins, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.  相似文献   

17.
A novel series of isatin hybrids 5a-g was designed, synthesized, and characterized spectroscopically. The synthesized compounds were evaluated for their cytotoxic activity against the human breast cancer cell line (MCF-7) by in vitro MTT assay. Amongst the tested compounds, 5e compound bearing benzyl moiety at N4 piperazine was found to be the most active with the promising IC50 (12.47 µM). Moreover, the active compounds 5e and 5g were subjected to antitumor evaluation (in vivo) against Dalton’s ascitic lymphoma (DAL) cell line and the results suggested that the best active compound 5e can normalize the blood picture in comparison to the standard drug. An in silico molecular docking study using the crystal structure of Hsp90 protein described the role of significant protein–ligand interactions and revealed more insights into the binding mode. The drug-likeliness of the compounds was predicted based on Lipinski's rule of five and pharmacokinetic ADME parameters. Hence, the synthesized isatin hybrids could be novel starting point anticancer lead compounds demonstrating drug-like properties which can be explored further for anticancer drug discovery.  相似文献   

18.
《Arabian Journal of Chemistry》2020,13(12):9179-9195
Multi-target EGFR, HER2, VEGFR-2 and PDGFR is an improved strategy for the treatment of solid tumors. This work deals with synthesis of an array of new 6-benzoyl benzimidazole derivatives utlizing1-(6-benzoyl-2-(3,4-dimethoxyphenyl)-1H benzo[d] imidazol-1-yl)propan-2-one (1) as a starting compound. The new compounds were screened as cytotoxic agents against cervical cancer cells (Hela) and Doxorubicin served as a reference drug. Most of the tested compounds showed promising anticancer activity in addition to their safety towards the normal cell line. The most potent candidates were evaluated as EGFR, HER2, PDGFR-β and VEGFR2 inhibitors in comparison to Erlotinib. Compounds 9 and 13 exhibited promising suppression effects. Also, the latter compounds exhibited their ability to induce cellular apoptosis alongside cell cycle arrest at the G2/M phase and accumulation of cells in pre-G1 phase. Molecular docking analysis suggested that compounds 2c, 3f, 9, 12 and 13 tightly interacts with the amino acid residues in the active binding site of HER2 kinase.  相似文献   

19.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global pandemic. The first step of viral infection is cell attachment, which is mediated by the binding of the SARS-CoV-2 receptor binding domain (RBD), part of the virus spike protein, to human angiotensin-converting enzyme 2 (ACE2). Therefore, drug repurposing to discover RBD-ACE2 binding inhibitors may provide a rapid and safe approach for COVID-19 therapy. Here, we describe the development of an in vitro RBD-ACE2 binding assay and its application to identify inhibitors of the interaction of the SARS-CoV-2 RBD to ACE2 by the high-throughput screening of two compound libraries (LOPAC®1280 and DiscoveryProbeTM). Three compounds, heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid, were found to exert an effective binding inhibition, with IC50 values ranging from 0.6 to 5.5 µg/mL. A plaque reduction assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition efficacy of heparin sodium and ATA. Molecular docking analysis located potential binding sites of these compounds in the RBD. In light of these findings, the screening system described herein can be applied to other drug libraries to discover potent SARS-CoV-2 inhibitors.  相似文献   

20.
Wee1 plays a critical role in the arrest of G2/M cell cycle for DNA repair before entering mitosis. Many cancer cells have been identified as overexpression of Wee1. In this research, pharmacophore modeling, molecular docking and molecular dynamics simulation approaches were constructed to identify novel potential Wee1 inhibitors. A compound 8 was found to have a novel skeleton against Wee1 with an IC50 value of 22.32 µM and a Ki value of 13.11 µM. Kinetic assays were employed to evaluate the compound 8 as a competitive inhibitor. Compound 8 was tested against A-549 tumor cell lines with IC50 value of 17.8 µM. To investigate the intermolecular interaction of Wee1 and compound 8, further molecular dynamics simulations were performed. It indicates that the binding mode of compound 8 and reference ligand is similar. The active core scaffold of compound 8 could represent a promising lead compound for studying Wee1 and be used for further structural optimization to design more potent Wee1 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号