首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclotides are head-to-tail cyclic peptides that contain a cystine knot motif built from six conserved cysteine residues. They occur in plants of the Rubiaceae, Violaceae, Cucurbitaceae, and Fabaceae families and, aside from their natural role in host defense, have a range of interesting pharmaceutical activities, including anti-HIV activity. The variation seen in sequences of their six backbone loops has resulted in cyclotides being described as a natural combinatorial template. Their exceptional stability and resistance to enzymatic degradation has led to their use as scaffolds for peptide-based drug design. To underpin such applications, methods for the chemical synthesis of cyclotides have been developed and are described here. Cyclization using thioester chemistry has been instrumental in the synthesis of cyclotides for structure-activity studies. This approach involves a native chemical ligation reaction between an N-terminal Cys and a C-terminal thioester in the linear cyclotide precursor. Since cyclotides contain six Cys residues their syntheses can be designed around any of six linear precursors, thus providing flexibility in synthesis. The ease with which cyclotides fold, despite their topologically complex knot motif, as well as the ability to introduce combinatorial variation in the loops, makes cyclotides a promising drug-design scaffold.  相似文献   

2.
Many Violaceae plants contain cyclotides, which are plant cyclopeptides distinguished by a cyclic cystine knot motif with 28–37 amino acid residues. In the current study, four new cyclotides, vila A–D ( 1 – 4 , resp.), together with a known cyclotide, varv D ( 5 ), were isolated from Viola labridorica (Violaceae). A chromatography‐based method was used to isolate the cyclotides, which were characterized using tandem mass spectrometry and 2D‐NMR spectroscopy. Several of the cyclotides showed cytotoxic activities against five cancer cell lines, i.e., U251, MDA‐MB‐231, A549, DU145, and BEL‐7402, with vila A and B ( 1 and 2 , resp.) being the most cytotoxic. The isolated cyclotides showed no antibacterial activity against Staphyloccocus aureus and Candida albicans. Homology modeling of the cyclotide structures was used to analyze structure–activity relationships.  相似文献   

3.
Cyclotides, a class of macrocyclic plant peptides, characterized by a cyclic backbone and three inter-locking disulfide bonds, may be divided into two major structural subfamilies, Möbius and Bracelet, based on the presence or absence of a specific proline residue. The present study describes the suite of cyclotides obtained from Clitoria ternatea, characterized by LC−MS and MS/MS techniques. Notable variations in product ion distributions were observed in cyclotides belonging to different structural subfamilies based on the number and positions of proline residues. For instance, Cter M which is an abundant Möbius cyclotide in this plant containing three proline residues, displayed distinct b- and y- ion characteristics in the MS/MS spectra compared to Cliotide T1, another commonly identified cyclotide but belonging to the Bracelet subfamily having two proline residues. The distinct fragmentation pattern of prototypical cyclotides of each structural subfamily, determined by Xxx-Pro bond fragmentation, was used to rapidly identify and sequence a novel cyclotide ctr pep 30 from this plant.  相似文献   

4.
We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans‐splicing in combination with a highly efficient split‐intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI‐I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α‐synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI‐I in a ratio of 1:5×104. This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide‐based libraries in eukaryotic cells.  相似文献   

5.
The cyclotides are a recently discovered, structurally unique family of bioactive plant peptides. Their discovery spawned a series of structural analyses, synthetic efforts, and studies to define the biosynthesis and biological properties of these novel peptide metabolites. Cyclotides have a head-to-tail cyclized amino acid backbone and a conserved cystine knot motif that provides an extremely stable structural framework. They all share a common global fold and are highly resistant to denaturation and to cleavage by proteolytic enzymes. However, these macrocyclic peptides are quite permissive to amino acid substitutions or additions in several peripheral loop regions, since changes in these loops do not alter the core cyclotide structure. These features make cyclotides attractive templates for incorporating desired amino acid sequences and then delivering these peptide sequences in a well defined, highly stable framework. Cyclotides likely function in a defensive role in the source plants since they exhibit a broad spectrum of antimicrobial activity and are detrimental to the growth and survival of herbivorous insects. Cyclotides are gene-encoded polypeptides that are cleaved from larger precursor proteins and then cyclized. This review summarizes research done on a subset of cyclotides that were discovered due to their HIV inhibitory properties. It details the isolation and characterization of these compounds and describes this work in the context of our current state of knowledge of the entire cyclotide family.  相似文献   

6.
Cyclotides are plant-produced, bioactive, cyclic mini-proteins with interesting pharmaceutical and agricultural applications. A reverse phase liquid chromatography electrospray ionization mass spectrometry (RP-LC-ESI-MS) method for analysis of cyclotides in plant materials with a minimum of sample pre-treatment is presented. Three exemplary cyclotides (kalata B1, kalata B2 and cycloviolacin O2) were used as reference substances for the method development. Linearity (r(2)>0.99) was achieved in the concentration range 0.05-10 mg/L and the limit of detection was 1.7-4.0 μg/L. The present study is the first to demonstrate that cyclotides dissolved in water sorb to glass vials, but the addition of 15% of acetonitrile or 40 mg/L of bovine serum albumin is sufficient to keep the cyclotides in solution. Cyclotides were extracted from candied violets, violet tea, and the plants Oldenlandia affinis and Viola odorata using 70% methanol containing 0.1% formic acid (v/v). The plant content was determined to be 23.5-14,200 μg/g (dry weight). The highest content of cyclotide was found in wild Danish V. odorata, and it is the highest content of cyclotide in a plant reported hitherto. Candied violets contained 0.00-8.66 μg/g (dry weight), while no cyclotides were detected in commercial violet tea.  相似文献   

7.
Cyclotides constitute a fascinating family of circular proteins containing ca.30 amino acid residues.They have a unique cyclic cysteine knot topology and exhibit remarkable thermal,chemical and enzymatic stabilities.These characteristics enable them to have a range of biological activities and promising pharmaceutical and agricultural applications.Here,we present a practical strategy for the chemical synthesis of cyclotides through the intramolecular ligation of fully unprotected peptide O-esters.This strategy involves the mild Fmoc solid-phase peptide synthesis of the peptide O-ester backbone,the head-to-tail cyclization of the cyclotide backbone by native chemical ligation,and the oxidative refolding to yield the natural knot protein.The simplicity and high efficiency of the strategy can be employed in the synthesis of artificial cyclotides for pharmaceutical applications.  相似文献   

8.
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.  相似文献   

9.
The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaceae families and their natural function in plants appears to be in host defense: they have potent activity against certain insect pests and they also have antimicrobial activity. There are currently around 50 published sequences of cyclotides and their rate of discovery has been increasing over recent years. Ultimately the family may comprise thousands of members. This article describes the background to the discovery of the cyclotides, their structural characterization, chemical synthesis, genetic origin, biological activities and potential applications in the pharmaceutical and agricultural industries. Their unique topological features make them interesting from a protein folding perspective. Because of their highly stable peptide framework they might make useful templates in drug design programs, and their insecticidal activity opens the possibility of applications in crop protection.  相似文献   

10.
Several methods have been proposed for determining the binding affinity of antimicrobial peptides (AMPs) to bacterial cells. Here the utilization of MALDI-TOF-MS was proposed as a reliable and efficient method for high throughput AMP screening. The major advantage of the technique consists of finding AMPs that are selective and specific to a wide range of Gram-negative and -positive bacteria, providing a simple reliable screening tool to determine the potential candidates for broad spectrum antimicrobial drugs. As a prototype, amp-1 and -2 were used, showing highest activity toward Gram-negative and -positive membranes respectively. In addition, in silico molecular docking studies with both peptides were carried out for the membranes. In silico results indicated that both peptides presented affinity for DPPG and DPPE phospholipids, constructed in order to emulate an in vivo membrane bilayer. As a result, amp-1 showed a higher complementary surface for Gram-negative while amp-2 showed higher affinity to Gram-positive membranes, corroborating MS analyses. In summary, results here obtained suggested that in vitro methodology using MALDI-TOF-MS in addition to theoretical studies may be able to improve AMP screening quality.  相似文献   

11.
The cyclotides are a family of circular and knotted proteins of natural origin with extreme enzymatic and thermal stability. They have a wide range of biological activities that make them promising tools for pharmaceutical and crop-protection applications. The cyclotides are divided into two subfamilies depending on the presence (M?bius) or absence (bracelet) of a cis-Pro peptide bond. In the current work we report a series of experiments to give further insight into the structure-activity relationship of cyclotides in general, and the differences between subfamilies and the role of their hydrophobic surface in particular. Selective chemical modifications of Glu, Arg, Lys and Trp residues was tested for cytotoxic activity: derivatives in which the Trp residue was modified showed low effect, demonstrating the existence of a connection between hydrophobicity and activity. However, over the full set of cyclotides examined, there was no strong correlation between the cytotoxic activity and their hydrophobicity. Instead, it seems more like that the distribution of charged and hydrophobic residues determines the ultimate degree of potency. Furthermore, we found that while the Glu residue is very important in maintaining the activity of the bracelet cyclotide cycloviolacin O2, it is much less important in the M?bius cyclotides. Despite these differences between cyclotide subfamilies, a systematic test of mixtures of cyclotides revealed that they act in an additive way.  相似文献   

12.
This review focuses on the discovery of cyclotides in the Violaceae, their isolation and their anti-cancer effects. These macrocyclic plant peptides consist of about 30 amino acids, including three conserved disulfide bonds in a cystine knotted arrangement, which renders them a remarkable stability. Their unique structure, combined with a wide array of biological activities, makes them of great interest as possible leads in drug development or as carriers of grafted peptide sequences. Here we describe the work conducted in our laboratory, which started with the overall aim of identifying peptides and small proteins of the size 10-50 amino acid residues in plants with novel chemical structures and biological profiles with a potential for drug development or for use as pharmacological tools. Thus we developed a fractionation protocol to directly address major challenges encountered when dealing with plant material, such as removal of chlorophyll, polyphenols, and low molecular compounds omnipresent in plants. Using this protocol, we then discovered a suite of cyclotides, the varv peptides, from the plant Viola arvensis (Violaceae). Following this, separation methods directly targeting cyclotides were developed, e.g. by adsorption, ion exchange chromatography and solvent-solvent partitioning, which then were used in the isolation of additional cyclotides. To structurally examine cyclotides we have also developed methods based on mass spectrometry for cyclotide sequencing and mapping of disulfide bonds. Finally, to assess structure-activity relationships, regarding their anti-cancer and cytotoxic effects that we focus upon, we have also characterized the three dimensional structure of cyclotides by homology modeling techniques.  相似文献   

13.
14.
Several kinds of cyclic silsesquioxane (CSSQ) precursors containing linear siloxane chain were prepared to improve both the mechanical properties of their thin films and the compatibility with heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (tCD) as a porogen. The precursors were synthesized using a hydrolysis/condensation reaction with 2,4,6,8-tetramethyl-2,4,6,8-tetra (trimethoxysilylethyl) cyclotetrasiloxane (cyclic monomer) and three kinds of linear siloxane monomers. As the linear siloxane chain length increases in the CSSQ precursors, the compatibility between the CSSQ precursor and tCD molecules improved due to the chain flexibility of the precursor. Moreover, the mechanical strength of the CSSQ precursor (4ST37) containing linear tetrasiloxane was the best among the prepared precursors. The enhancement of mechanical property might also be attributed to the content of Si-OH groups as well as the chain flexibility, which could help the crosslinking reaction of Si-OH groups in the film curing process.  相似文献   

15.
Prostate cancer (PCa) is the most frequent type of cancer in men. Hypericum perforatum (H. Perforatum) extract (HPE) administration provides remarkable decrease of PCa development. H. perforatum contains 7 conserved miRNAs (Hyp-miR-156a, Hyp-miR-156b, Hyp-miR-166, Hyp-miR-390, Hyp-miR-394, Hyp-miR-396 and Hyp-miR-414) with different targets. In this study, we aimed to investigate cross-kingdom gene regulation via miRNAs of H. perforatum flower dietetically absorbed in manner of an in silico approach to define potential biomarkers for PCa. psRNATarget database was used to find human genes targeted by 7 pre-defined H. perforatum miRNAs. We defined the mostly affected gene families from these miRNAs as ZNF, TMEM, SLC and FAM gene families. GeneMANIA database was used to define the most affected genes (TMEM41B and SLC4A7) from these 7 miRNAs. cBioPortal database was used to define alteration frequencies of TMEM41B and SLC4A7 on different types of PCa and to measure the mutual interaction potency and significance of co-occurence in PCa. This analysis showed that neuroendocrine prostate cancer (NEPC) had the highest total mutation frequency (22%) of TMEM41B and SLC4A7 genes. Also, TMEM41B and SLC4A7 genes had an average 2.1% pathway change potential among all different types of PCa. Moreover, TMEM41B and SLC4A7 gene pair was found significantly co-occurrent in PCa (p < 0.001). Finally, via GEPIA database, we used Spearman correlation analysis to measure the correlation degree of TMEM41B and SLC4A7 genes in PCa and found their significant correlation with PCa (p = 1.2 × 10−12, R = 0.28). All in all, it was proved in silico and supported with previously known clinical data that SLC4A7 and TMEM41B potentially have a significant and critical tumor suppressive role for PCa, and show this effect combinatorily working together. This is the first study correlating SLC4A7 and TMEM41B with PCa significantly.  相似文献   

16.
A rapid method has been developed for the quantification of the prototypic cyclotide kalata B1 in water and plasma utilizing matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry. The unusual structure of the cyclotides means that they do not ionise as readily as linear peptides and as a result of their low ionisation efficiency, traditional LC/MS analyses were not able to reach the levels of detection required for the quantification of cyclotides in plasma for pharmacokinetic studies. MALDI-TOF-MS analysis showed linearity (R2 > 0.99) in the concentration range 0.05-10 microg/mL with a limit of detection of 0.05 microg/mL (9 fmol) in plasma. This paper highlights the applicability of MALDI-TOF mass spectrometry for the rapid and sensitive quantification of peptides in biological samples without the need for extensive extraction procedures.  相似文献   

17.
We have recently explored novel class of potentially anti-breast cancer active enamidines in which four molecules 4a-c and 4h showed higher anticancer activity compared to standard drug doxorubicin. As a part of extension of this work, we have further evaluated in silico cheminformatic studies on bioactivity prediction of synthesized series of enamidines using mole information. The normal cell line study of four lead compounds 4a-c and 4h against African green monkey kidney vero strain further revealed that the compounds complemented good selectivity in inhibition of cancer cells. The in silico bioactivity and molecular docking studies also revealed that the compounds have significant interactions with the drug targets. The results reveal that enamidine moieties are vital for anti-breast cancer activity as they possess excellent drug-like characteristics, being potentially good inhibitors of cyclin dependent kinases7 (CDK7).  相似文献   

18.
Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.  相似文献   

19.
MicroRNAs (miRNAs) are small single-stranded RNA molecules that play an essential role in the regulation of gene expression and cell physiology. Gene rearrangements occurring in the miRNA sequence are associated with cancer. The IBTK genetic locus is located in the genomic sequence 6q14.1 that undergoes chromosomal aberration in lymphoproliferative disorders. The IBTK gene encodes the proteins IBtk-α, β and γ that regulate the B cell receptor signalling through Bruton's tyrosine kinase, which promotes B cell survival and differentiation. Pro-MirII-based analysis predicted four precursors of microRNAs (pre-miR) encoded by introns 17, 21, 26 and the 3′ un-translated region of the IBTK gene. Pre-miR-IBTK3, which was encoded by intron 26, was the effective substrate of RNase III Dicer in vitro as well as the precursor of an IBtk miRNA generated in vivo. By CLUSTALW-based analysis, pre-miR-IBTK3 homologues were found in Pan troglodytes, Pongo pygmaeus and Macaca mulatta, suggesting an evolutionary conserved function in primates.  相似文献   

20.
唐军  谭宁华 《化学进展》2010,22(4):677-683
植物环蛋白(cyclotides)是一类植物中富含二硫键、由28-37个氨基酸残基组成的大环蛋白,其分子中含有一个结构独特的环胱氨酸结(cyclic cystine knot, CCK)。由于其独特的结构和广泛的生物活性,如子宫收缩、溶血、抗肿瘤、抗微生物等活性,及其能耐常规的高温、酸解和酶解的稳定结构,可作为多肽药物设计中的模板分子进行结构修饰或活性多肽的载体,而在国际上引起广泛的关注。目前从堇菜科、茜草科和葫芦科约30种植物中发现100多个植物环蛋白,研究主要集中在澳大利亚、瑞典和美国等几个研究组,近年我们也在开展相关研究。本文主要从植物环蛋白的提取、分离、检测与结构鉴定方法,结构与性质,序列的同源性及分类,化学合成与生物合成,生物活性以及应用前景等几个方面介绍植物环蛋白的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号