首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to characterize the influence of plasma spraying on the point of zero charge (PZC) of Al2O3-, Cr2O3- and TiO2-based materials. PZC is one of the most important parameter, which describes the acidity of oxide material in aqueous environments. PZC values of several plasma sprayed oxides were determined using mass titration method. Studies were performed for initial spray powders and plasma sprayed coating materials. In addition, mass titration experiments were performed for water-washed and nonwashed samples. It was found that mass titration is a suitable method to estimate the surface acidity of relatively coarse sample powders. It was found for most of the studied materials that the limiting pH values (assumed to be close PZC) were close to those reported in literature for the PZC values of traditionally manufactured oxide materials. On the other hand, mass titration curves of some oxide samples showed unexpected deviation in curve shapes and limiting pH. These deviations were probably due to selective dissolution of sample contaminations or sample material.  相似文献   

2.
The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.  相似文献   

3.
pH-dependent surface charging and points of zero charge II. Update   总被引:1,自引:0,他引:1  
Recently published PZC (points of zero charge) of metal oxides and related materials are compiled to update the previous compilations (M. Kosmulski, Chemical Properties of Material Surfaces, Dekker, New York, 2001; J. Colloid Interface Sci. 253 (2002) 77). The electroacoustic method has been widely used; it has become a standard tool, and it has proved to produce IEP (isoelectric points) comparable with those obtained by means of classical electrokinetic methods. The recently published numerical values of PZC/IEP of various materials corroborate the old results, with one exception: the PZC of magnetite found at pH 8 is substantially higher than the values reported in the old literature. New approaches to the electrokinetics of sparingly soluble salts have recently been proposed; e.g., the hysteresis in electrokinetic curves of (nominally) BaTiO3 has been interpreted in terms of changes in the surface stoichiometry caused by leaching.  相似文献   

4.
We report a comprehensive investigation of the electronically excited states of helium clusters and droplets of sizes ranging from a few to several 10(7) atoms using time-resolved fluorescence excitation spectroscopy and quantum chemical ab initio calculations. We employ various approaches for our analysis considering the lifetime-dependence of the fluorescence intensity, spectral shifts, intensity scaling with cluster size, isotopic dependence, and density-dependence of the calculated electron wave function radii. A unique feature of helium clusters and droplets is their radially varying particle density. Our results show that short-lived fluorescence is sensitive to regions of increased density and probes excitations located in the bulk volume, whereas long-lived fluorescence is sensitive to regions of reduced density such as for small clusters or for the surface of large droplets. Spectra of (3)He droplets serve as a reference for low density, but are free from contributions of small clusters. This allows us to distinguish regions of reduced density as these can be due to both surface states or small clusters. Our analysis reveals a picture where spectral features are related to regions of different density due to isotopic composition, cluster size, and surface or bulk volume location of the excitations. The 2s and 2p related excitations appear as blue-shifted wings for small clusters or for excited atoms within the surface layer, whereas in the bulk-volume of large droplets, they appear as distinct bands with large intensities, dominating the entire spectrum. Excitations at energies higher than 23 eV are unambiguously assigned to regions of low and medium density location within the deeper parts of the surface layer but show no relation to the bulk volume. Our findings support the idea that in liquid helium high-lying states and, in particular, Rydberg states are quenched in favor of the 2s and 2p excitations.  相似文献   

5.
The dynamic behavior of surface accommodated chlorine atoms on RuO(2)(110) was studied by a variety of experimental methods including high resolution core level shift, thermal desorption-, and in situ infrared spectroscopy as well as in situ surface X-ray diffraction in combination with state-of-the-art density functional theory calculations. On the chlorinated RuO(2)(110) surface the undercoordinated oxygen atoms have been selectively replaced by chlorine. These strongly bound surface chlorine atoms shift from bridging to on-top sites when the sample is annealed in oxygen, while the reverse shift of Cl from on-top into bridge positions is observed during CO exposure; the vacant bridge position is then occupied by either chlorine or CO. For the CO oxidation reaction over chlorinated RuO(2)(110), the reactant induced site switching of chlorine causes a site-blocking of the catalytically active one-fold coordinatively unsaturated (1f-cus) Ru sites. This site blocking reduces the number of active sites and, even more important, on-top Cl blocks the free migration of the adsorbed reactants along the one-dimensional 1f-cus Ru rows, thus leading to a loss of catalytic activity.  相似文献   

6.
We use density functional theory to examine the electronic structure of small Au(n) (n=1-7) clusters, supported on a rutile TiO(2)(110) surface having oxygen vacancies on the surface (a partially reduced surface). Except for the monomer, the binding energy of all Au clusters to the partially reduced surface is larger by approximately 0.25 eV than the binding energy to a stoichiometric surface. The bonding site and the orientation of the cluster are controlled by the shape of the highest occupied molecular orbitals (HOMOs) of the free cluster (free cluster means a gas-phase cluster with the same geometry as the supported one). The bond is strong when the lobes of the HOMOs overlap with those of the high-energy states of the clean oxide surface (i.e., with no gold) that have lobes on the bridging and the in-plane oxygen atoms. In other words, the cluster takes a shape and a location that optimizes the contact of its HOMOs with the oxygen atoms. Fivefold coordinated Ti atoms located at a defect site (5c-Ti(*)) participate in the binding only when a protruding lobe of the singly occupied molecular orbital (for odd n) or the lowest unoccupied molecular orbital (for even n) of the free Au(n) cluster points toward a 5c-Ti(*) atom. The oxygen vacancy influences the binding energy of the clusters (except for Au(1)) only when they are in direct contact with the defect. The desorption energy and the total charge on clusters that are close to, but do not overlap with, the vacancy differ little from the values they have when the cluster is adsorbed on a stoichiometric surface. The behavior of Au(1) is rather remarkable. The atom prefers to bind directly to the vacancy site with a binding energy of 1.81 eV. However, it also makes a strong bond (1.21 eV) with any 5c-Ti atom even if that atom is far from the vacancy site. In contrast, the binding of a Au monomer to the 5c-Ti atom of a surface without vacancies is weak (0.45 eV). The presence of the vacancy activates the 5c-Ti atoms by populating states at the bottom of the conduction band. These states are delocalized and have lobes protruding out of the surface at the location of the 5c-Ti atoms. It is the overlap of these lobes with the highest orbital of the Au atom that is the major reason for the bonding to the 5c-Ti atom, no matter how far the latter is from the vacancy. The energy for breaking an adsorbed cluster into two adsorbed fragments is smaller than the kinetic energy of the mass-selected clusters deposited on the surface in experiments. However, this is not sufficient for breaking the cluster upon impact with the surface, since only a fraction of the available energy will go into the reaction coordinate for breakup.  相似文献   

7.
The recently published points of zero charge (PZC) of various materials are compiled to update previous compilations [M. Kosmulski, Chemical Properties of Material Surfaces, Dekker, New York, 2001; M. Kosmulski, J. Colloid Interface Sci. 253 (2002) 77; M. Kosmulski, J. Colloid Interface Sci. 275 (2004) 214]. The recent results corroborate the previously found PZC with a few exceptions. The PZC of alumina obtained from the second-harmonic generation response is substantially lower than the PZC obtained by means of standard methods, while for titania the difference is less significant. PZC of Tl2O3 at pH 7.9 was reported for the first time. A surprisingly insignificant temperature effect on the IEP of rutile was found. Recent model studies aimed at explanation of the effect of the nature of 1-1 electrolytes on the course of charging curves and of discrepancies in the PZC of different materials having the same chemical formula are summarized.  相似文献   

8.
This work was concerned with the dependence of the interfacial tension (Gamma(SL)) on surface degree of oxygen content and on polymer branching degree. The static Gamma(SL) was evaluated by contact angle (theta;(c)) and the dynamic Gamma(SL) by fluorescence depolarization of molecular probes seeded in induced flows of monoethylene glycol. The latter results were interpreted using statistical covariant analysis. Two different systems of flowing films were studied: free films flowing on the surfaces on which they impinge and films flowing inside 1-mm-thick microflow cells. The solid surfaces were polyethylene of low density, medium density, high density, and linear with low density, polypropylene, vinyl acetate co-polymer with oxygen content of 15% and 28%, borosilicate, and tin dioxide. Increase in oxygen content of the surface decreased both the static and the dynamic Gamma(SL), which demonstrated that the presence of oxygen atoms hindered wetting. Only the dynamical Gamma(SL) was sensitive to polymer branching, and it increased as branching degree decreased. This was attributed to the higher hydrogen-atom density at the surface, which favored temporary intermolecular bonds between the surface and the flowing liquid.  相似文献   

9.
Potential variations on semiconductor surfaces are often mapped using a combination of constant current topographic and local surface photo-voltage (SPV) imaging. SPV imaging provides a direct measurement of surface-potential variations at large lateral distances from a charged defect or adsorbate. However, directly above the defect, variations in the SPV signal need to be interpreted in terms of surface screening, traps, and band bending. We have examined these effects using isolated oxygen atoms on a GaAS(110) surface, which is free of surface states. We interpret variations in the SPV signal in terms of a simple electrostatic model which considers the oxygen-induced Coulomb potential and corresponding image potential, both of which affect the surface density of states.  相似文献   

10.
We have investigated the decomposition and chemisorption of a 1,3,5-trinitro-1,3,5-triazine (RDX) molecule on Al(111) surface using molecular dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). The real-space DFT calculations are based on higher-order finite difference and norm-conserving pseudopotential methods. Strong attractive forces between oxygen and aluminum atoms break N-O and N-N bonds in the RDX and, subsequently, the dissociated oxygen atoms and NO molecules oxidize the Al surface. In addition to these Al surface-assisted decompositions, ring cleavage of the RDX molecule is also observed. These reactions occur spontaneously without potential barriers and result in the attachment of the rest of the RDX molecule to the surface. This opens up the possibility of coating Al nanoparticles with RDX molecules to avoid the detrimental effect of oxidation in high energy density material applications.  相似文献   

11.
We review recent developments in controlling photoinduced desorption processes of alkali halides. We focus primarily on hyperthermal desorption of halogen atoms and show that the yield, electronic state, and velocity distributions of desorbed atoms can be selected using tunable laser excitation. We demonstrate that the observed control is due to preferential excitation of surface excitons. This approach takes advantage of energetic differences between surface and bulk exciton states and probes the surface exciton directly. We demonstrate that desorption of these materials leads to controlled modification of their surface geometric and electronic structures. We then extend the exciton mechanism of desorption, developed for alkali halides, to metal oxide surfaces, in particular magnesium oxide. In addition, these results demonstrate that laser desorption can serve as a solid-state source of halogen and oxygen atoms, in well-defined electronic and velocity states, for studying chemical processes in the gas phase and at surfaces.  相似文献   

12.
The effect of the point of zero charge (PZC) of the support oxide (Al(2)O(3), Nb(2)O(5), SiO(2) and ZrO(2)) on the molecular structure of hydrated vanadium oxide species has been investigated with EXAFS spectroscopy for low-loaded vanadium oxide catalysts. It was found that the degree of clustering (i.e., the V[dot dot dot]V coordination number) and the V...V distance increase with decreasing PZC of the support oxide; i.e., Al(2)O(3) (8.7) < ZrO(2) (7) < Nb(2)O(5) (3.3) < SiO(2) (2). Upon hydration the silica-supported vanadium oxide exhibited a clear alteration in the position of the oxygen atoms surrounding the central vanadium atom and the number of oxygen atoms around vanadium increased to five. In contrast, only minor changes in the molecular structure were detected for the alumina-, niobia- and zirconia-supported vanadium oxide catalysts. Based on a detailed analysis of the EXAFS data a semi-quantitative distribution of vanadium oxide species present on the surface of the different support oxides can be obtained, which is in good agreement with earlier characterization studies primarily making use of Raman spectroscopy.  相似文献   

13.
Homogeneous mesoporous zirconium-containing MCM-41 type silica were prepared by supramolecular templating and their textural and structural properties were studied using powder X-ray diffraction, N2 porosimetry, atomic force microscopy, EXAFS, XPS, and UV-VIS-NIR diffuse reflectance spectroscopy. Their acid properties were also studied by using IR spectroscopy and by the use of catalytic tests such as the decomposition of isopropanol and the isomerization of 1-butene. The materials prepared show a good degree of crystallinity with a regular ordering of the pores into a hexagonal arrangement and high thermal stability. The specific surface area of the prepared materials decreases as the zirconium content rises. Zirconium atoms are in coordination 7 to 8 and located at the surface of the pores such that a high proportion of the oxygen atoms bonded to zirconium corresponds to surface non-condensed oxygen atoms. Both facts are responsible for the acid properties of the solids that show weak Brønsted and medium strong Lewis acidity.  相似文献   

14.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

15.
The interaction of oxygen with the (111), (110), and (100) platinum crystal surfaces has been modeled by the density functional theory method within the generalized gradient approximation (GGA). It has been demonstrated that the dissociative adsorption of a dioxygen molecule to all three types of surfaces is energetically favorable. The peroxide species are less stable than the dissociated ones, but they are also energetically favorable. There have been considered the relative stability of different structures involving one and several oxygen atoms, the mutual influence of the atoms on the surface, the adsorption energy as a function of the surface coverage, and adsorption onto the intrinsic surface defects.  相似文献   

16.
Silica surface sites, which can be formed in cleavage processes, and their hydrolyzed counterparts are investigated with ab initio cluster calculations. Natural Bond Orbital (NBO) theory is used to characterize bonding around silica surface sites. Higher energy lone pairs of electrons on oxygen atoms either hyperconjugate to vicinal silanol/siloxane antibonding orbitals or backdonate electron density via donor–acceptor π-type bonding with participation of pd or p hybrids on silicon atoms. Upon substitution of hydroxyl groups of orthosilicic acid with silica monomers the strength of siloxane and silanol Si–O bonding increases as energies of bonding orbitals and contributions from p-orbitals decrease. Silanone sites and a complementary pair of silyl/siloxy radical sites are found to be the most stable geminal and single non-hydrolyzed sites, respectively. Atomic charges based on natural wavefunctions and on fitting to electrostatic potential, and characteristic bands of IR spectra associated with siloxane and silanol stretching vibrations of silica surface sites are reported.  相似文献   

17.
The effect of oxygen plasma treatment on the surface properties of tin-doped indium oxide (ITO) substrates and the changes in surface properties of treated ITO substrates with ageing time were investigated by X-ray photoelectron spectroscopy (XPS), contact angle and surface free energy measurements. Experimental results show that oxygen plasma treatment increases the oxygen concentration, decreases the carbon concentration, and enhances the surface free energy and polarity, and thereby improves the surface properties of ITO substrates. However, the improved ITO surface properties tended to decay and the surface free energy decreased, with ageing time. In addition, the ageing effect of treated ITO substrates on the performance of polymer light-emitting diodes (LEDs) was studied with respect to the driving voltage, electroluminescent luminance and efficiency. We observe that the ITO substrates aged for various times result in significant differences in optical and electrical characteristics which become worse as the ageing time increases. The optical and electrical performance of polymer LEDs is closely related to the surface properties of ITO substrate and the interface characteristics of ITO/polymer.  相似文献   

18.
拓宽银电极上SERS活性的研究电位范围   总被引:1,自引:0,他引:1  
电极表面的粗糙化处理是进行表面增强拉曼光谱(SERS)研究的重要前提,通过研究两种截然不同的氧化还原循环(ORC)粗粗糙电极的方法,分析其SERS活性稳定电位区间与ORC还原电位之间的关系,发现高活性的SERS位皆处于亚稳状态,易随电极电位趋近零电位(PZC)而发生表面原子重排,以至推动活性,引入强吸附物种,可以使特殊ORC得到的SERS活性在PZC以正电位区稳定存在,并可在PZC以负一得到常规O  相似文献   

19.
In this study, we employed density functional theory (DFT) to investigate the oxidation of ammonia (NH(3)) on the IrO(2)(110) surface. We characterized the possible reaction pathways for the dehydrogenation of NH(x) species (x = 1-3) and for the formation of the oxidation products N(2), N(2)O, NO, NO(2), and H(2)O. The presence of oxygen atoms on coordinatively unsaturated sites (O(cus)) of the oxygen-rich IrO(2)(110) surface promotes the oxidation of NH(3) on the surface. In contrast, NH(3) molecules prefer undergoing desorption over oxidation on the stoichiometric IrO(2)(110) surface. Moreover, the O(cus) atoms are also the major oxidants leading to the formation of oxidation products; none of the oxidations mediated by the bridge oxygen atoms were favorable reactions. The energy barrier for formation of H(2)O as a gaseous oxidation product on the IrO(2)(110) surface is high (from 1.83 to 2.29 eV), potentially leading to the formation of nitrogen-atom-containing products at high temperature. In addition, the selectivity toward the nitrogen-atom-containing products is dominated by the coverage of O(cus) atoms on the surface; for example, a higher coverage of O(cus) atoms results in greater production of nitrogen oxides (NO, NO(2)).  相似文献   

20.
We present a study of the oxygen‐plasma functionalization of polyethersulphone (PES). PES samples were exposed to a weakly ionized, highly dissociated oxygen plasma, with an electron temperature of 5 eV and a positive ion density of 8 × 1015 m?3, and its afterglow, in which the density of charged particles was negligibly low and the density of neutral oxygen atoms was 4 × 1021 m?3. The wettability of the samples was determined by measuring the contact angle of a water drop, while the appearance of the functional groups on the surface of the samples was determined using high‐resolution conventional XPS. The samples were saturated with surface functional groups, both in the plasma and in the afterglow region, after 1 s of treatment time. The results are explained by the high flux of oxygen atoms on the sample surface and the characteristics of the oxygen plasma. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号