首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical equilibria concerning formaldehyde and formic acid are computationally investigated in water over a wide range of thermodynamic conditions. The free energy is evaluated in the method of energy representation for the solvent effect on the decomposition processes of these two compounds. The solvation is found to suppress the production of nonpolar species from a polar. In the two competitive decomposition reactions of formic acid, the solvent strongly inhibits the decarboxylation (HCOOH-->CO2+H2) and its effect is relatively weak for the decarbonylation (HCOOH-->CO+H2O). The equilibrium weights for the two decomposition pathways of formic acid are determined by the equilibrium constant of the water-gas-shift reaction (CO+H2O-->CO2+H2), which is an essential and useful process in fuel technology. The reaction control by the solvent is then examined for the water-gas-shift reaction. Through the comparison of the equilibrium constants in the absence and presence of solvent, even the favorable side of the reaction is shown to be tuned by the solvent density and temperature. The reaction equilibrium is further treated for aldehyde disproportionation reactions involving formaldehyde and formic acid. The disproportionation reactions are found to be subject to relatively weak solvent effects and to be dominated by the electronic contribution.  相似文献   

2.
Nitrous acid is a key redox controlling factor, affecting the speciation of neptunium in the reprocessing of used nuclear fuel by solvent extraction. The kinetics of the reduction of neptunium(VI) by nitrous acid in solutions of nitric acid was investigated spectrophotometrically by the method of initial rates. The reaction is of first order with respect to Np(VI) while the order with respect to HNO2 is 1.20 ± 0.04. The reaction rate is almost inversely proportional to the hydrogen ion concentration (reaction order −0.92 ± 0.06), indicating that the reaction proceeds primarily through the reaction of neptunium(VI) with the nitrate anion. The experimental value of the rate constant k for the rate law −d[Np(VI)]/dt = k·[Np(VI)]·[HNO2]1.2/[H+] is of (0.159 ± 0.014) M−0.2 s−1 in I = 4 M and at 20 °C. The activation energy is (−57.3 ± 1.6) kJ/mol, which is in agreement with previous data on this reaction in perchloric acid.  相似文献   

3.
The gas-phase thermal decomposition of cis-2-methylcyclopropane carboxylic acid was investigated in the temperature range 692–753 K and pressure between 10 and 70 Torr. Arrhenius parameters were determined for homogeneous, unimolecular formation of the isomeric products and for the overall loss-rate of the reactant. The determined values are in accordance with the Arrhenius parameters that were reported previously for the thermal unimolecular reactions of cyclopropane and other substituted cyclopropanes. The formation of isomeric products and the observed Arrhenius parameters are consistent with a biradical mechanism. The effect of surface on the reaction was studied at 732 K using the packed reaction vessel. It was observed that the rate of production of all isomeric products and the total loss of cis-2-methylcyclopropane carboxylic acid were not affected by increasing surface to volume ratio.  相似文献   

4.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

5.
The kinetics of the thermal decomposition of processed poly(lactic acid) has been studied and compared to that of raw material. Processing consisted of two different industrial processes: 1) Injection (with or without further annealing); 2) Extrusion followed by injection (with or without further annealing). For this study, an integral method (based on the general analytical solution), differential methods (based on the first conversion derivative and on the 2nd derivative) and special methods have been used. On the other hand, a method based on the maximum decomposition rate has been considered. By doing that, the kinetic parameters (reaction order, frequency factor and activation energy) have been determined. It has been demonstrated that there was only one first-order reaction for the entire conversion range. A new equation (based on the second conversion derivative plot as a function of temperature) was developed allowing the calculation of the reaction order. This method quantifies peak areas (and not peak heights, as reported by Kissinger). It is very useful because it considers both peak shape and width. Activation energy, as determined by using the general analytical solution, was 318 kJ/mol for unprocessed poly(lactic acid) whereas it was 280 ± 5 kJ/mol for processed materials. All the processed materials had approximately the same thermal stability (T5 = 333.0-335.8 °C, at 95% confidence level), which was slightly lower than that of unprocessed materials (T5 = 337.5 °C). PLA melting (during extrusion and injection) was responsible for depolymerization reactions (the small molecules formed during melting processes can volatilize readily).  相似文献   

6.
A mechanism for radical formation from aromatic sulfinic acids through the disproportionation reaction is suggested. It is postulated that two parallel steps, one a bimolecular reaction and the other involving a trimer of sulfinic acid, yield sulfenyl sulfonate. This labile compound decomposes into free radicals or reacts with another molecule of sulfinic acid producing thiol sulfonate and sulfonic acid. This mechanism explains the variety and unusually high orders encountered in polymerization initiated by sulfinic acid initiators. The proposed kinetic scheme is in agreement with the proton dependence found for both the initiation as well as the disproportionation reactions.  相似文献   

7.
The kinetics of transalkylation and isomerization of meta‐diethylbenzene in the presence of benzene using triflic acid as a catalyst has been investigated. High catalytic activity of the triflic acid catalyst was observed in homogeneous liquid‐phase reactions. On the basis of the product distribution obtained, transalkylation, disproportionation, and isomerization reactions have been considered and the main product of the reaction was ethylbenzene. These reactions are conducted in a closed liquid batch reactor with continuous stirring under dry nitrogen and atmospheric pressure over the temperature range of 288–308 K. The main transalkylation, disproportionation, and isomerization reactions occurred simultaneously and were considered as elementary reactions. The apparent activation energy of the transalkylation reaction was found to be 35.5 kJ/mol, while that of disproportionation reaction was 42.3 kJ/mol. The reproducibility of the experimental product distribution occurred with an average relative error of ±2%. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 555–563, 2003  相似文献   

8.
Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
工业氨基三甲叉膦酸中副产物的核磁共振分析   总被引:1,自引:0,他引:1  
采用多种核磁共振(NMR)技术测定了工业氨基三甲叉膦酸(ATMP)产品中副产物的分子结构,发现该物质为甲氨基二甲叉膦酸(MADMP),它是甲醛歧化反应导致的副产物;给出了可能的反应方程式;测出了MADMP的相对含量,MADMP与ATMP摩尔比约为2。  相似文献   

10.
The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO3H, COOH and OH groups, was investigated at 353–393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8–1.0 mL; starch, 0.3–0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.  相似文献   

11.
Kinetics of the reaction of F-atoms with trichloroacetic acid was studied at 293 K using a low-pressure flow reactor. Reactant concentrations were monitored by mass spectrometry combined with molecular beam sampling. The reaction rate constant obtained was k = (4.3 ± 0.8) × 10−11 cm3 molecule−1 s−1. This is an average value determined by the relative method employing four reference reactions of F-atoms: with 1,1,1-trichloroethane, ethanol, cyclohexane, and 2-fluoroethanol, for which rate constant ratios k/kref = 7.4 ± 1.2, 0.24 ± 0.02, 0.28 ± 0.02, and 0.34 ± 0.04, respectively, were obtained. The resultant rate constant is compared with the rate constants for the related fluoro-substituted acids.  相似文献   

12.
Catalytic properties of different copper-containing catalysts synthesized from different precursors were studied in the hydrogenation of lactic acid at mild conditions. The most active catalyst was found to be chrysocolla-like copper hydroxysilicate with the copper loading of about 50 at%. At the optimal reaction conditions (T = 473 K, WHSV = 0.08 h−1), 95% conversion of lactic acid over this catalyst and 65% selectivity to 1,2-propylene glycol were achieved. The effect of the weight hourly space velocity (WHSV) on the lactic acid conversion and selectivity to propylene glycol was studied. It is found that the formation of propylene glycol and propanoic acid as a byproduct proceeds via parallel pathways.  相似文献   

13.
《印度化学会志》2021,98(2):100030
The present research focuses on intensified synthesis of tricaprin by esterification reaction between capric acid and glycerol catalysed by dry amberlyst-15 using ultrasonication approach. Effect of several reaction conditions like molar ratio, reaction temperature, and amberlyst-15 loading on the rate of conversion has been studied. Effect of ultrasonic conditions like duty cycle and irradiation time on the intensified synthesis is investigated. Recyclability of amberlyst-15 is studied to make process more economical. It is investigated that the optimum reaction conditions which gave maximum conversion of 95% were molar ratio of capric acid: glycerol as 3:5, reaction temperature 90 ​°C, 4% amberlyst −15 loading. It was further investigated that ultrasonic conditions which gave intensified synthesis were 70% duty cycle and irradiation time of 120 ​min. The ultrasonic assisted process was compared with conventional synthesis. Conventional synthesis gave 30% yield in 120 ​min and 82% in 18 ​h. Amberlyst-15 was successfully reused for 13 cycle without any change in the conversion (%) of reaction.  相似文献   

14.
We review and discuss kinetic studies of the disproportionation reaction of iodous acid (HIO2) in the presence of excess of Hg2+‐ions. The reactions are followed at different temperatures in water solution with strongly defined acidity. The rate constants of disproportionation are determined between 285 and 303 K based on kinetic data obtained under steady‐state conditions. The calculated rate constants increase with increasing temperature and acid concentration. The corresponding values of activation energy as well as enthalpy and entropy of activation for this reaction have been calculated. The enthalpy of activation as well as entropy is higher at higher sulfuric acid concentration. Also, it was considered that the values of Gibbs energy of formation of HgI+ are generated during the process. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 687–691, 2010  相似文献   

15.
The stoichiometry, equilibrium, and kinetics of the photo-induced disproportionation of iodomalonic acid to I?, I2, and tartronic acid have been studied by means of spectrophotometry and iodide selective electrode at 20.0 ± 0.2°C, pH 2.0–4.0. At pH > 2.9, only I? and HOCH(COOH)2 are detected as major products and the reaction reaches 100% conversion. At pH < 2.9, I2 and malonic acid are also formed and the reaction stops at a conversion rate less than 100%. Both UV (band with a peak at 360 nm) and visible light (480 nm) have been found to be effective. Two primary photochemical processes are identified: While both reactions are sensitive to UV light, only (M2) can be affected by visible light. (M1) and (M2) are considered to initiate a chain reaction sequence in which I· radicals oxidize iodomalonic acid. Dual effects of reaction products on the reaction rate have been observed: while iodine increases the efficiency of visible light and accelerates the reaction, malonic acid inhibits the photo-decomposition by mediating the recombination of I· radicals to I2. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
《印度化学会志》2023,100(1):100863
The esterification of propanoic acid with n-butanol to produce n-butyl propionate and water in the influence of an Amberlite catalyst was investigated using a batch reactor. The catalyst was chosen based on its ability to perform in this reaction. The temperature of the reaction runs between 363.15 K and 403.15 K, while the propanoic acid to n-butanol molar ratio is around 1:1 and 1:4. The selection of the catalyst loading is dependent on the volume of the reaction mixture. The catalyst dosage was kept within a 1%–3% by weight range. The kinetics of conversion have been researched in relation to the reaction temperature, mole ratio, catalyst size, stirrer speed, and catalyst quantity. The catalyst dosage and reaction temperature, according to the study, have a substantial influence on how soon the system achieves equilibrium. The pseudo homogeneous kinetic model is developed and tested against experimental results. Under the specified conditions, model predictions and empirical observations accord well. Arrhenius equation was used for calculation of rate constants and energy of activation. The forward reaction's frequency factor & activation energy are 18.554 L/mol.min and 30350 J/mol, correspondingly. Since the equilibrium constant increases as the temperature rises, the reaction is endothermic.  相似文献   

17.
The manganese(II) catalysed oxidation of glycerol by cerium(IV) in aqueous sulphuric acid has been studied spectrophotometrically at 25 °C and I = 1.60 mol dm−3. Stoichiometry analysis shows that one mole of glycerol reacts with two moles of cerium(IV) to give cerium(III) and glycolic aldehyde. The reaction is first order in both cerium(IV) and manganese(II), and the order with respect to glycerol concentration varies from first to zero order as the glycerol concentration increases. Increase in sulphuric acid concentration, added sulphate and bisulphate all decrease the rate. Added cerium(III) retards the rate of reaction, whereas glycolic aldehyde had no effect. The active species of oxidant and catalyst are Ce(SO4)2 and [Mn(H2O)4]2+. A mechanism is proposed, and the reaction constants and activation parameters have been determined.  相似文献   

18.
The catalytic performance of exchanged Y faujasites by Ce3+, La3+, UO22+, Co2+, Sr2+, Pb2+, Tl+ and NH4+ ions were studied in a disproportionation reaction in the gaseous phase. It was shown that total acidity generated by exchanged ions is responsible of the catalytic activity. Rare earths (cerium, lanthanum and uranium) catalysts have appreciable performance and allowed one to obtain an important xylenes proportion at 400 to 450 °C. The decrease of xylenes and trimethylbenzenes proportion in studied catalysts shows the implication of xylenes in toluene disproportionation reaction.  相似文献   

19.
The oxidation of antimony(III) by cerium(IV) has been studied spectrometrically (stopped flow technique) in aqueous sulphuric acid medium. A minute amount of manganese(II) (10−5 mol dm−3) is sufficient to enhance the slow reaction between antimony(III) and cerium(IV). The stoichiometry is 1:2, i.e. one mole of antimony(III) requires two moles of cerium(IV). The reaction is first order in both cerium(IV) and manganese(II) concentrations. The order with respect to antimony(III) concentration is less than unity (ca 0.3). Increase in sulphuric acid concentration decreases the reaction rate. The added sulphate and bisulphate decreases the rate of reaction. The added products cerium(III) and antimony(V) did not have any significant effect on the reaction rate. The active species of oxidant, substrate and catalyst are Ce(SO4)2, [Sb(OH)(HSO4)]+ and [Mn(H2O)4]2+, respectively. The activation parameters were determined with respect to the slow step. Possible mechanisms are proposed and reaction constants involved have been determined.  相似文献   

20.
This study reports experimental data and kinetic modeling of acetic acid esterification with n-pentanol using sulfated zirconia as a catalyst. Reactions were carried out in an isothermal well-mixed batch reactor at different temperatures (50-80°C), n-pentanol to acid molar ratios (1:1-3:1), and catalyst loadings (5-10 wt% in relation to the total amount of acetic acid). The reaction mechanism regarding the heterogeneous catalysis was evaluated considering pseudo-homogeneous, Eley–Rideal, and Langmuir–Hinshelwood model approaches. The reaction mixture was considered a nonideal solution and the UNIQUAC thermodynamic model was used to take into account the nonidealities in the liquid phase. The results obtained indicated that increases in the temperature and catalyst loading increased the product formation, while changes in the n-pentanol to acetic acid molar ratio showed no significant effect. The estimated enthalpy of the reaction was −8.49 kJ mol−1, suggesting a slightly exothermic reaction. The Eley–Rideal model, with acetic acid adsorbed on the catalyst as the limiting step, was found to be the most significant reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号