首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complex solid hydrofulleride mixtures were synthesized by prolonged hydrogenation of C(60) at 120 bar hydrogen pressure, 673 K temperature, and different reaction periods. The high degree of hydrogenation was confirmed by infrared spectroscopy and X-ray diffraction. The identity of hydrogenation products was determined by high-resolution field desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Despite partial gas-phase fragmentation of hydrofullerene ions during mass analysis, the data suggest that the synthesized mixtures consist of mostly C(58-60)H(x) hydrofullerenes. Increasing the duration of hydrogenation results in synthesis of C(59)H(x) and C(58)H(x) as major products. Possible hydrofullerene fragmentation pathways during both material synthesis and mass spectrometric analysis are discussed. Gas-phase fragmentation in the mass spectrometer arises from hydrofullerene ions C(60)H(x)(+) with x > 40 and C(59)H(44)(+) with drastically decreased molecular stability relative to the known C(60)H(36).  相似文献   

2.
Direct methylation of [60]fullerene via a gas-phase reaction in a CH4/H2 atmosphere was performed using a modified hot filament chemical vapor deposition method. Pressures were varied from 10 to 60 mbar and the substrate was maintained at 690 degrees C. High-resolution matrix-assisted laser desorption ionization (MALDI) mass spectrometry analysis showed signals corresponding to C60H18-2n(H,CH3)n. Collision-induced dissociation experiments confirmed a maximum of 18 ligands possible to the [60]fullerene cage.  相似文献   

3.
A molecular solid of fullerene (C(60)) intercalated with cobalt cyclopentadienyl dicarbonyl (CoCp(CO)(2)) was shown to be an effective matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI) of large alkanes (demonstrated up to C(94)H(190)) and polyethylenes that otherwise cannot be produced as intact ions in the gas phase.  相似文献   

4.
The high-pressure treatment of C60 in an H2 atmosphere at high temperatures leads to the efficient formation of a covalently bound dimer and some oligomeric species. The resulting hydrogenated C120 is an example of the bulk production of covalently bound derivatized fullerene cores. Matrix-assisted laser desorption/ionization in conjunction with reflectron time-of-flight mass spectrometry has been applied to the product analysis. The dissociation pattern of selected C120H(2x)+ ions (x > 30) indicates the dimeric structure of (C60H(x))2, as opposed to a giant hydrofullerene species possessing a fused C120 core. However, the results also clearly indicate a much stronger bonding (multiple sigma bonding) between the C60H(x) units than present in cycloaddition products. Evidence of a covalently linked dimer was obtained in labeling experiments, on the basis of which any laser-induced gas-phase aggregation of the C60H(x) monomer during the analysis is discounted.  相似文献   

5.
对3种电化学方法合成的新型结构富勒烯衍生物进行了激光质谱表征,确认了1,2加成以及[5,6]开环富勒烯衍生物结构.质谱结果发现了富勒烯以及富勒烯衍生物与氧的结合峰,核磁共振结果进一步证明了富勒烯衍生物的结构,为含有C60结构衍生物的研究提供了有力的表征手段.  相似文献   

6.
Fullerene hydrides were prepared by hydrogenation of fullerences C60 and C70 using proton transfer from 9,10-dihydroanthracene to fullerene and were studied by mass spectrometry (electron impact, field desorption), IR, UV, and1H and13C NMR spectroscopy. The main product of the hydrogenation of C60 is C60H36, which is sufficiently stable. Hydrogenation of fullerene C70 gives a series of polyhydrides C70H n (n=36–46), and the main product is C70H36. The dehydrogenation of C60H36 by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is not quantitative and results in the formation of fullerene derivatives along with C60. The comparison of the IR and1H and13C NMR spectral data for solid C60H36 with the theoretical calculations suggests that the fullerene hydride has aT-symmetric structure and contains four isolated benzenoid rings located at tetrahedral positions on the surface of the closed skeleton of the molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 4, pp. 671–678, April, 1997.  相似文献   

7.
Products of the reaction of C(60) with H(2) gas have been monitored by high-resolution atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS), X-ray diffraction, and IR spectroscopy as a function of hydrogenation period. Samples were synthesized at 673 K and 120 bar hydrogen pressure for hydrogenation periods between 300 and 5000 min, resulting in the formation of hydrofullerene mixtures with hydrogen content ranging from 1.6 to 5.3 wt %. Highly reduced C(60)H(x) (x > 36-40) and products of their fragmentation were identified in these samples by APPI FT-ICR MS. A sharp change in structure was observed for samples with at least 5.0 wt % of hydrogen. Low-mass (300-500 Da) hydrogenation products not observed by prior field desorption (FD) FT-ICR MS were detected by APPI FT-ICR MS and their elemental compositions obtained for the first time. Synthetic and analytical fragmentation pathways are discussed.  相似文献   

8.
The ATRP (atom‐transfer radical polymerization) process was used to synthesize C60 end‐capped polystyrene. GPC data demonstrated that fullerene (C60) was chemically bonded to polystyrene, and C60 was most likely monosubstituted. Matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrometry (MS) analysis (with 1,8‐dihydroxy‐9(10H)‐anthracenone (dithranol)/silver trifluoroacetate as the matrix) of this copolymer proved that C60 was monosubstituted.  相似文献   

9.
Mass spectra of the epoxy methylated[60]fullerenols were obtained by EI mass spectrometry using "desorption" or "in-beam" technique. The mass spectra have an intense molecular monocation peak M(+) and a weak dication peak M(++), revealing the stability of these products under the MS (EI) conditions. The remaining peaks correspond to the successive loss of methyl groups and oxygen atoms for which the pure fullerene represents a more stable product. The distinction between the multiply charged fullerene C(60)(z+) and their fragments with equal m/z was also studied.  相似文献   

10.
Electrospray and matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) experiments were used to investigate an unusual fragmentation in collision-induced dissociation (CID) of sodiated and potassiated perbenzyl ether intermediates obtained in the total synthesis of gallate ester constituents of green tea. Prominent fragments correspond to multiple sequential losses of neutral C14H14 that were not observed in the protonated and ammoniated species, that instead present fragment ion series in which members are separated by C7H6. High-resolution MALDI quadrupole time-of-flight (Q-TOF) and electrospray-Fourier transform mass spectrometry (FTMS) were used to confirm elemental compositions of these and related ions.  相似文献   

11.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

12.
[chemical structure: see text]. Organic polyamines are efficient reagents for the regioselective hydrogenation of [60]fullerene. When [60]fullerene is heated in diethylenetriamine, a known C60H18 isomer with C3v symmetry is produced and isolated in good purity without the need for chromatographic separation. The reaction can be scaled upward to multigram levels without impacting yield or quality of product.  相似文献   

13.
The primary structure of 3'-imino[60]fulleryl-3'-deoxythymidine ions is studied using mass spectrometry both in the positive and negative modes. Interaction between the subunits is discussed using collision-induced dissociation (CID) spectra. Collisional activation with argon of the sodiated cations leads to the cleavage of the glycosidic bond and the transfer of a radical hydrogen from the deoxyribose to the thymine. The sodiated thymine is the only fragment observed for low collision energies in the positive mode. In the negative mode, two different ionization mechanisms take place, reduction and deprotonation in the presence of triethylamine. The 2.7 eV electron affinity of C60 and its huge cross section compared to the small cross section and predicted 0.44 eV electron affinity of the thymidine subunit most likely localize the radical electron on the fullerene. On the other hand, deprotonation of the 3'-azido-3'-deoxythymidine (AZT) is known to occur in N-3, the most acidic site of the nucleobase. Consequently, deprotonation causes the negative charge to be initially localized on the thymine. Both types of parent anions give the radical anion C60*- as fragment. The other fragments detected are the dehydrogenated 3'-imino[60]fulleryl-3'-deoxyribose anion, C60NH2-, C60N- and C60H-. Since in negative ion mass spectrometry all fragments include the [60]fullerene unit, this suggests that the fragmentation is driven by the electron affinity of the [60]fullerene, likely responsible for a charge transfer between the deprotonated thymine and the C60.  相似文献   

14.
By applying high-pressure H2 to a new fullerene derivative, C63NO2SPh2Py (1), having a 13-membered-ring orifice, 100% incorporation of a H2 molecule into the fullerene cage has been achieved for the first time. This result substantiates the theoretical calculations indicating that the energy barrier required for H2 insertion through an orifice in 1 is considerably lower than that for the previously reported derivative with the largest orifice among open-cage fullerenes synthesized thus far. Upon matrix-assisted laser desorption/ionization mass spectroscopy, the removal of organic addends from the fullerene derivative 1 encapsulating H2 and restoration of the pristine C60 cage, which retains approximately one-third of incorporated H2, have been observed.  相似文献   

15.
Two C(60) hexakis-adducts (2 and 3) were synthesized by using a protection-deprotection strategy. The symmetric fullerene tetrakis-adduct 8 was obtained by anthracene removal from the hexakis-adduct 7. Reaction of 8 with terpyridylglycine or pyridylglycine afforded two hexakis-adducts, 2 and 3. By using the retro-cyclopropanation reaction, the four malonate addends located on the equatorial belt of the hexakis-adducts were removed to afford two trans-1 bis-adducts, 4 and 5, with terpyridyl- or pyridylpyrrolidine groups. The structures of 2 and 3 were confirmed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and (1)H, (13)C, and COSY NMR, and UV-visible spectroscopy. The cyclic voltammograms of fullerene multiadducts 2, 3, and 9 show irreversible reductions. Self-assembled monolayers (SAMs) of 1 and 3 were formed on gold surfaces through nitrogen adsorption. SAMs of 3 represent the first example of a fullerene hexakis-adduct formed on gold surfaces through nitrogen adsorption. Controlled potential electrolyses (CPE) were conducted to prepare trans-1 bis-adducts 4 and 5 modified with terpyridyl and pyridyl groups.  相似文献   

16.
The application of sulfur as a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of highly chlorinated and fluorinated fullerenes is reported. Control over fluorofullerene fragmentation which resulted in the domination of the molecular peak C(60)F(36)(-) was achieved, with the optimal matrix-to-analyte ratio found to be 1000:1. We suggest the possible mechanism of the molecular ion formation according to the charge transfer between the sulfur anions and C(60)F(36). For the first time the LDI and MALDI mass spectra of the highly chlorinated fullerene C(60)Cl(x)(x(max) approximately 32) are presented. The formation of odd chlorine ions (positive and negative) is observed. We conclude that use of sulfur as a matrix leads to a significant decrease in fragmentation of the halogenated fullerenes.  相似文献   

17.
Dirhenium adducts of purine dinucleotides were identified by mass spectrometry. In consecutive studies, Re(2)(O(2)C(2)H(3))(2)Cl(4) . 2H(2)O was reacted with 2'-deoxyguanylyl(3'-->5')-2'-deoxyguanosine (dGpG) and 2'-deoxyadenylyl(3'-->5')-2'-deoxyguanosine (dApG) in H(2)O or D(2)O. These reactions were monitored to identify novel dinuclear rhenium:dinucleotide complexes as confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (CID MS/MS) experiments. However, the most abundant adducts detected by ES-MS were dirhenium:nucleotide species. Of these, guanine-containing ions were observed with highest ion counts suggesting a preference for guanine coordination. Dimetal adducts showed coordination of the purine bases and common metalated fragments were observed for both dGpG and dApG reactions.  相似文献   

18.
The material formed by depositing C(2)(-) anions onto/into thin C(60) films (on graphite) at room temperature has been studied by means of thermal desorption mass spectroscopy, ultraviolet photoionization spectroscopy, atomic force microscopy (AFM), and surface enhanced Raman spectroscopy. As-prepared, C(2)/C(60) films manifest thermal desorption behaviour which differs significantly from pure C(60) films. Whereas the latter can be fully sublimed, we observe decomposition of C(2)/C(60) films to a high-temperature-stable material while predominantly C(60), C(62), and C(64) are desorbed in parallel. Deposition of C(2)(-) also leads to significantly modified electronic and vibrational properties. Based on DFT model calculations of the Raman spectra, we suggest that as-prepared C(2)/C(60) films contain appreciable amounts of polymeric networks comprising -C(2)-C(60)-C(2)-C(60)- chains. Detection of sublimed C(62) and C(64) upon heating implies that thermal decomposition of C(2)/C(60) films involves addition/uptake of C(2) units into individual fullerene cages. Correspondingly, annealing films up to various intermediate temperatures results in significant modifications to valence-band UP spectra as well as to surface topographies as imaged by AFM. The novel carbonaceous material obtained by heating to T > 950 K has a finite density of states at the Fermi level in contrast to as-prepared C(2)/C(60). It comprises fused fullerene cages.  相似文献   

19.
In spite of the growing acceptance of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for the analysis of a wide variety of compounds, including polymers and proteins, its use in analyzing low‐molecular‐weight molecules (<1000m/z) is still limited. This is mainly due to the interference of matrix molecules in the low‐mass range. Here the derivatized fullerenes covalently bound to silica particles with different pore sizes are applied as thin layer for laser desorption/ionization (LDI) mass spectrometric analysis. Thus, an interference of intrinsic matrix ions can be eliminated or minimized in comparison with the state‐of‐the‐art weak organic acid matrices. The desorption/ionization ability of the developed fullerene–silica materials depends on the applied laser power, sample preparation and pore size of the silica particles. Thus, fullerene–silica serves as an LDI support for mass spectrometric analysis of molecules (<1500 Da). The performance of the fullerene–silica is demonstrated by the mass analysis of variety of small molecules such as carbohydrates, amino acids, peptides, phospholipids and drugs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
C(60)H(36) has been used as the source of hydrogen for the in situ hydrogenation of (C(59)N)(2), leading to C(59)NH(5) as the main reaction product identified by negative-ion mass spectrometry and providing evidence of the usage of C(60) as a storage device for hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号