首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of hydrophobic poly(oxypropylene) (POP)‐backboned and hydrophilic poly(oxyethylene)‐backboned amidoacids and imidoacids were prepared through the reaction of poly(oxyalkylene) diamines and trimellitic anhydride (TMA) under mild conditions. The synthesized copolymers were characterized with nuclear magnetic resonance and Fourier transform infrared. Their ability to lower the water surface tension and toluene/water interfacial tension was measured and correlated with the hydrophobic/hydrophilic balance with multiple sodium carboxylate functionalities. The specific POP2000/TMA copolymers, consisting of a 2000 g/mol POP segment and multiple amidoacid functionalities, enabled the demonstration of a strong surfactant tendency and a critical micelle concentration at 0.1 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 646–652, 2006  相似文献   

2.
The interactions between fluorocarbon‐modified poly (sodium acrylate) and various kinds of added surfactants have been studied by means of viscometric measurement. Association behavior was found in both hydrogenated and fluorinated anionic, nonionic and cationic surfactants. Among them, the interactions between fluorocarbon‐modified poly (sodium acrylate) and cationic surfactants are the strongest, owing to the cooperation of both electrostatic attractions and hydrophobic associations. The anionic surfactants have the weakest effects on the solution properties because of the existence of unfavorable electrostatic repulsion. The hydrophobic interactions between copolymers and fluorinated surfactants are much stronger than those between copolymers and hydrogenated surfactants.  相似文献   

3.
Amphiphilic block copolymers of methyl methacrylate (MMA) and sodium styrene sulfonate (SSNa) were successfully synthesized via direct atom transfer radical polymerization (ATRP) of SSNa. First, poly(sodium styrene sulfonate) (PSSNa) or poly(methyl methacrylate) (PMMA) macroinitiators were prepared using proper ATRP systems for each case. In some cases, functional initiators, which allow further reactions, were used. The macroinitiators were characterized and further used to synthesize PSSNa/PMMA block copolymers, by using proper solvent combinations, such as N,N-dimethylformamide/water or methanol/water at appropriate volume ratios, in order to ensure solubility of the synthesized amphiphilic copolymers. The molecular weight of the copolymers was determined by gel permeation chromatography, using water as eluent. By using a combination of analytical techniques like 1H NMR, FTIR and thermogravimetry, the chemical structure and the actual copolymer composition were determined. Since, the block copolymers were soluble in water, forming hydrophilic/hydrophobic domains in aqueous solution, their micellization behavior was further studied by pyrene fluorescence probing.  相似文献   

4.
Novel water‐soluble amphiphilic copolymers have been synthesized by free radical copolymerization of 2‐hydroxyethylacrylate with vinyl butyl ether. In water these copolymers exhibit lower critical solution temperature, which depends on the content of hydrophobic vinyl butyl ether units. The interaction between these copolymers and poly(acrylic acid) or poly(methacrylic acid) in aqueous solutions results in formation of interpolymer complexes stabilized by hydrogen bonds and hydrophobic interactions. An increase in hydrophobicity of the copolymers leads to the enhancement of their complex formation ability with respect to poly(acrylic acid) and poly(methacrylic acid). Poly(methacrylic acid) forms stronger complexes with the copolymers when compared with poly(acrylic acid). The complexes exhibit dual sensitivity to pH‐ and temperature and this property may be easily adjusted regulating the strength of interaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 195–204, 2006  相似文献   

5.
The pH-dependent influence of two different strongly alternating copolymers [poly(N,N'-diallyl-N,N'-dimethylammonium-alt-N-phenylmaleamic carboxylate) (PalPh) and poly(N,N'-diallyl-N,N'-dimethylammonium-alt-3,5-bis(carboxyphenyl)maleamic carboxylate) (PalPhBisCarb)] based on N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives on the phase behavior of a water-in-oil (w/o) microemulsion system made from toluene-pentanol (1:1) and sodium dodecyl sulfate was investigated. It was shown that the optically clear phase range can be extended after incorporation of these copolymers, leading to an increased water solubilization capacity. Additionally, the required amount of surfactant to establish a clear w/o microemulsion depends on the pH value, which means the hydrophobicity of the copolymers. Conductivity measurements show that droplet-droplet interactions in the w/o microemulsion are decreased at acidic but increased at alkaline pH in the presence of the copolymers. From differential scanning calorimetry measurements one can further conclude that these results are in agreement with a change of the position of the copolymer in the interfacial region of the surfactant film. The more hydrophobic PalPh can be directly incorporated into the surfactant film, whereas the phenyl groups of PalPhBisCarb flip into the water core by increasing the pH value.  相似文献   

6.
Ultrasonic degradation of poly(ethylene oxide‐block‐propylene oxide) copolymers consisting of a hydrophilic and a hydrophobic portion was studied with the aim to determine the location of bonds involved in the initial scission of the copolymers. LC–APCI‐IT‐MS and LC–APCI‐orbitrap‐MS were used for the detailed structural analysis of degradation products. The results indicated that initial bond scissions occurred principally at the boundary regions between backbones of polyethylene oxide (PEO) and polypropylene oxide (PPO) chains. Further structural analysis revealed the presence of oxygen adducts in the degradation products. Comparison with a thermal degradation carried out in helium atmosphere, one can conclude that the oxygen adducts are formed by radical reaction with water or dissolving oxygen molecules. The study demonstrated that chemical reactions as well as physical bond stress scissions are involved in the ultrasonic degradation of the copolymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Two new antenna polyelectrolytes, poly(sodium styrenesulfonate-co-N-vinylcarbazole) (PSSS–VCz) and poly[sodium styrenesulfonate-co-N-(acryloyloxyhexyl)carbazole](PSSS–AHCz) have been synthesized. Both polymers were found to solubilize large hydrophobic compounds such as perylene in aqueous solution, but PSSS–AHCz was much more efficient than PSSS–VCz. The distribution coefficients of perylene between the polymer pseudophase and water was determined to be (2.9 ± 0.1) × 106 and (4.0 ± 0.2) × 104 in PSSS–AHCz and PSSS–VCz, respectively. The greater solubilizing ability of PSSS–AHCz is attributed to the higher content of hydrophobic monomer units in the polymer. Both copolymers displayed photocatalytic activity, absorbing light in the UV-visible spectral region. Energy can then be transferred to a solubilized molecule or dissolved oxygen and induce photochemical reactions. The model reaction used in this study was the photosensitized oxidation of perylene solubilized in aqueous polymer solutions. PSSS–AHCz was found to be a much more efficient photocatalyst than PSSS–VCz. The enhanced photocatalytic activity of PSSS–AHCz is attributed to the greater concentration of carbazole chromophores, the higher local concentration of probe in the polymeric pseudophase and possibly to the elimination of the low-energy excimer.  相似文献   

8.
It was found that the copolymers of sodium acrylate (AA-Na) with styrene (St) and of sodium methacrylate (MAA-Na) with methyl methacrylate (MMA) could polymerize vinyl monomers in an aqueous phase without the usual initiator. Interestingly, there was a definite composition of the copolymer for the polymerization of a given monomer; for example, when poly(St-co-AA-Na) was used, St, MMA, vinyl acetate, ethyl acrylate, methyl acrylate, and acrylonitrile were polymerized by the copolymer having mole ratios of AA-Na:St of 0.61:0.29, 0.47:0.53, 0.38:0.62, 0.30:0.70, 0.24:0.76, and 1.00:0, respectively. The copolymers of various compositions can form hydrophobic areas (HAs) in the water phase. As has been repeatedly reported, the polymerization proceeds in the HAs, and the following new hypothesis was recently proposed that the hard (the less hydrophilic) HA prefers to incorporate the hard monomer and the soft (the less hydrophobic or the more hydrophilic) HA prefers to incorporate the soft monomer. The results mentioned above support this hypothesis.  相似文献   

9.
Fluorine-containing amphiphilic block copolymers, poly(sodium methacrylate)-block-poly(nonafluorohexyl methacrylate) (NaMAm-b-NFHMAn) (m:n = 61:12, 72:33, 64:57), and the corresponding non-fluorine-containing amphiphilic block copolymer, poly(sodium methacrylate)-block-poly(hexyl methacrylate) (NaMAm-b-HMAn) (m:n = 64:10, 69:37, 67:50), were synthesized. Both polyNaMA-b-polyNFHMA and polyNaMA-b-polyHMA formed micelles above critical micelle concentrations, (cmc's), around 3 x 10(-5) to 1 x 10(-4) mol/L, while neither polymer decreased surface tension of aqueous solutions. The size and shape of the micelles were examined by dynamic light scattering, small-angle neutron scattering, and small-angle X-ray scattering. PolyNaMA-b-polyHMA appeared to form only spherical micelles, while polyNaMA-b-polyNFHMA with a long NFHMA segment formed both spherical and rodlike micelles. The micelles of fluorine-containing block copolymers were obviously larger than those of non-fluorine-containing block copolymers with the same chain length and the same hydrophilic/hydrophobic chain ratio. The fluorine-containing block copolymer selectively solubilized fluorinated dye into the water phase when a mixture of decafluorobiphenyl and 2,6-dimethylnaphthalene was added to the micelle solution.  相似文献   

10.
The interaction of amphiphilic block copolymers comprising an anionic block (polyacrylate or polymethacrylate) and a hydrophobic block (polystyrene, poly(butyl acrylate) or polyisobutylene) with lightly crosslinked poly(N,N-diallyl-N,N-dimethylammonium chloride) is studied for the first time. It is shown that the cationic hydrogel can sorb anionic amphiphilic block copolymers via electrostatic interaction with the corona of block copolymer micelles. The rate of sorption of block copolymer polyelectrolytes is significantly lower than the rate of sorption of linear polyions and is controlled by the lengths of the hydrophilic and hydrophobic blocks and the flexibility of the latter blocks. The sorption of amphiphilic block copolymers is accompanied by their self-assembly in the polycomplex gel and formation of a continuous hydrophobic layer impermeable to water and the low-molecular-mass salt dissolved in it.  相似文献   

11.
Poly(ethylene glycol) (PEG) triblock and diblock amphiphilic block copolymers were synthesized from poly(ethylene glycol) and poly(ethylene glycol) monomethyl ether, respectively. The hydroxyl groups of PEG readily react with 2-(1-octadecenyl) succinic anhydride (OSA) at 140 °C through ring-opening reaction of the succinic anhydride. Both the PEG-OSA diblock and triblock copolymers are produced without use of any solvent or catalyst. The molecular structure of the copolymers was characterized by 1H NMR and FTIR spectroscopy, and the thermal properties by DSC. The behavior of the copolymers in selective and nonselective solvents was studied by 1H NMR spectroscopy in deuterium oxide and d-chloroform. The aggregation of the polymers in water was studied with a particle size analyzer and a transmission electron microscope (TEM) in bright field mode. The results show that the hydrophobic C18 chain with intramolecular succinic anhydride linker can be attached to the hydrophilic PEG chain, an ester bond forming between the blocks. The copolymers exhibit flexible, liquid-like hydrophobic blocks even in water, which is a nonsolvent for OSA. PEG-OSA block copolymers self-organize in water, forming micellar polymer aggregates in nanoscale.  相似文献   

12.
《Soft Materials》2013,11(1):33-52
The preparation of poly(para-phenylene) (PPP) derivatives with sulfonate groups and photo cross-linkable side chains is described. These statistical copolymers are used to construct molecularly reinforced polyelectrolyte networks. Their swelling behavior as thin films with covalent attachment to a solid substrate is investigated by multiangle null-ellipsometry in a total internal reflection geometry (TIRE). Different mixtures of water, tetrahydrofurane, and added sodium chloride as well as a variation of the network structure show that the behavior of the networks is mainly determined by the balance of hydrophobic and hydrophilic groups of the polyelectrolyte. Increasing degree of swelling on addition of salt to water/THF mixtures suggests a preferential solvation of the organic compound in the network.  相似文献   

13.
Sulfonated fluorinated multiblock copolymers based on high performance polymers were synthesized and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers consist of fully disulfonated poly(arylene ether sulfone) and partially fluorinated poly(arylene ether ketone) as hydrophilic and hydrophobic segments, respectively. Synthesis of the multiblock copolymers was achieved by a condensation coupling reaction between controlled molecular weight hydrophilic and hydrophobic oligomers. The coupling reaction could be conducted at relatively low temperatures (e.g., 105 °C) by utilizing highly reactive hexafluorobenzene (HFB) as a linkage group. The low coupling reaction temperature could prevent a possible trans‐etherification, which can randomize the hydrophilic‐hydrophobic sequences. Tough ductile membranes were prepared by solution casting and their membrane properties were evaluated. With similar ion exchange capacities (IECs), proton conductivity and water uptake were strongly influenced by the hydrophilic and hydrophobic block sequence lengths. Conductivity and water uptake increased with increasing block length by developing nanophase separated morphologies. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments revealed that the connectivity of the hydrophilic segments was enhanced by increasing the block length. The systematic synthesis and characterization of the copolymers are reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 214–222, 2010  相似文献   

14.
Palladium-catalyzed Mizoroki-Heck reactions were carried out in water using thermoresponsive polymer micelles. The micelles were generated from thermoresponsive block copolymers consisting of a poly(N-isopropylacrylamide) (PNIPAAm) segment and a hydrophilic segment such as nonionic poly(ethylene glycol) (PEG) (2) and anionic poly(sodium p-styrenesulfonate) (PSSNa) (9). These copolymers exhibited lower critical solution temperature (LCST) behavior at ca. 40–50?°C and showed thermal stimuli-induced formation and dissociation of micelles. The copolymers formed micelles in aqueous solution at higher temperature, where catalytic reactions proceeded. At lower temperature, the micelles dissociated to form a clear solution, enabling efficient extraction of the products from aqueous reaction mixture. In the presence of these copolymers, palladium complexes catalyzed the coupling reactions between aryl iodides and alkene compounds inside the hydrophobic micelle cores in water under relatively milder conditions. Extraction of the products from the aqueous solution of 2 or 9 was found to be efficient enough in comparison with conventional surfactants.  相似文献   

15.
Chemically generated singlet oxygen (1O2, 1Deltag) is able to oxidize a great deal of hydrophobic substrates from molybdate-catalyzed hydrogen peroxide decomposition, provided a suitable reaction medium such as a microemulsion system is used. However, high substrate concentrations or poorly reactive organics require large amounts of H2O2 that generate high amounts of water and thus destabilize the system. We report results obtained on combining dark singlet oxygenation of hydrophobic substrates in microemulsions with a pervaporation membrane process. To avoid composition alterations after addition of H2O2 during the peroxidation, the reaction mixture circulates through a ceramic membrane module that enables a partial and selective dewatering of the microemulsion. Optimization phase diagrams of sodium molybdate/water/alcohol/anionic surfactant/organic solvent have been elaborated to maximize the catalyst concentration and therefore the reaction rate. The membrane selectivity towards the mixture constituents has been investigated showing that a high retention is observed for the catalyst, for organic solvents and hydrophobic substrates, but not for n-propanol (cosurfactant) and water. The efficiency of such a process is illustrated with the peroxidation of a poorly reactive substrate, viz., beta-pinene.  相似文献   

16.
The stability and properties of dilute solution hydrogels, synthesized by transition metal mediated polymerization of amino acid N-carboxyanhydrides (NCAs), have been studied in deionized (DI) water as well as various ionic media. These hydrogels are diblock amphiphilic copolymers of hydrophilic, charged segments of poly(l-lysine HBr) or poly(l-glutamic acid sodium salt), and helical, hydrophobic segments of poly(l-leucine). While many of these samples are able to form strong gels in deionized water at polymer concentrations as low as 0.25 wt %, stability in salt or buffer solutions was found to be only achieved at moderately higher polymer concentrations ( approximately 3.0 wt %). We have adjusted relative copolymer compositions and molecular weights to optimize hydrogel strength and polymer solubility in salt concentrations up to 0.5 M NaCl, as well as in cell growth media and aqueous buffers of varying pH. These materials are unique since they do not collapse in high ionic strength media, even though gel formation is contingent upon the presence of highly charged polyelectrolyte segments. The remarkable properties of these hydrogels make them excellent candidates for use as scaffolds in biomedical applications, such as tissue regeneration.  相似文献   

17.
Amphiphilic polymers were prepared by the copolymerization of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and aromatic vinyl compounds such as 9-vinylphenanthrene (VPh) and 1-vinylpyrene (VPy) with the expectation that they would serve as potential media for photosensitized electron transfer reactions. AMPS strongly solubilizes the hydrophobic segments into water; i.e., poly(AMPS-co-VPh) with VPh mole fraction (fPh) up to about 0.60 and poly(AMPS-co-VPy) with VPy mole fraction (fPy) up to about 0.35 were found to be soluble in water. Poly(AMPS-co-VPh) in aqueous solution, as compared with that in DMF solution, showed a broad fluorescence spectrum with significant tailing in the longer-wavelength region along with a decrease in the intensity of the structured, monomer fluorescence band. These phenomena seem to imply the presence of an excimerlike interaction of phenanthryl groups in an aqueous solution through which the fluorescence from excited VPh units may be partly self-quenched. A considerable enhancement of the fluorescence from sodium 8-anilino-1-naphthalenesulfonate (ANS) caused by hydrophobic interaction of the probe with poly(AMPS-co-VPh) in aqueous solution indicated that these copolymers assume micellar structures. The fluorescence of these copolymers in aqueous solutions was quenched by bis(2-hydroxyethyl)terephthalate (BHET), an amphiphilic quencher, far more effectively than by fumaric acid, a hydrophilic quencher. This tendency is particularly strong for the copolymers with higher content of hydrophobic units. The second-order rate constants for the quenching of poly(AMPS-co-VPh) (fPh = 0.58) by BHET were found to be ca. 3 × 1010 and 1.5 × 109 M?1 s?1 in aqueous and in DMF solution, respectively. The larger value in an aqueous solution is presumably due to an increase of the effective concentration of the amphiphilic quencher around the VPh sequences of the copolymer resulting from hydrophobic interaction.  相似文献   

18.
Polymeric micelles are emerging as an effective drug delivery system for hydrophobic photosensitizers in photodynamic therapy (PDT). The objective of this study was to investigate the formulation of hydrophobic protoporphyrin IX (PpIX) with MePEG(5000)-b-PCL(4100) [methoxy poly (ethylene glycol)-b-poly (caprolactone)] diblock copolymers and to compare their PDT response to that of free PpIX. The photophysical and photochemical properties of the polymeric PpIX micelles were studied by measuring absorbance and fluorescence spectra, PpIX-loading efficiency and stability, the micelle particle size and morphology, as well as singlet oxygen luminescence and lifetime. The spherical micelles have a high PpIX-loading efficiency of 82.4% and a narrow size distribution with a mean diameter of 52.2 +/- 6.4 nm. The cellular uptake of PpIX in RIF-1 cells using PpIX micelles was approximately two-fold higher than that for free PpIX. Free PpIX and PpIX formulated in micelles exhibited similar subcellular localization in or around the cellular plasma membrane, as demonstrated using fluorescence microscopy. In vitro PDT results showed that the PpIX micelles have markedly increased photocytotoxicity over that with free PpIX, by nearly an order of magnitude at the highest light dose used. The micelles alone had no evident phototoxicity or dark toxicity. These findings suggest that MePEG(5000)-b-PCL(4100) diblock copolymer micelles have great potential as a drug delivery system for hydrophobic photodynamic sensitizers.  相似文献   

19.
两亲嵌段共聚物溶液内胶束形成的温度效应   总被引:2,自引:0,他引:2  
合成了一系列具有两亲嵌段结构的聚(乙二醇)(PEO)一聚(丙二醇)(PPO)共聚物.利用荧光探针及示差量热法测定了共聚物水溶液的临界胶束形成温度(CMT)值.发现二嵌段共聚物(PEO-PPO)和三嵌段共聚物(PEO-PPO-PEO)有着类似的变化规律,即随共聚物分子中疏水链(PPO)长度的增大,其CMT值降低.但三嵌段共聚(PPO-PEO-PPO)则因疏水链段处于共聚物分子的两端,因而在溶液中有可能形成立体网状交联结构.此外,利用探针分子在不同极性溶剂中荧光峰值波长发生位移的现象可以对形成胶束内核的组织程度、极性大小进行估测.  相似文献   

20.
In this report, we investigate the nanoparticle formation between random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) and oppositely charged natural surfactants, sodium oleate and sodium laurate, using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Though sodium oleate and sodium laurate are sparingly soluble in water, the nanoparticle complexes formed between the RCPs and these surfactants are soluble in the entire range of compositions studied here, including the stoichiometric electronetural complexes. The spherical nature of these nanoparticle complexes is revealed by electron microscopic (EM) analysis. Dynamic light scattering (DLS) showed that the average diameters of the nanoparticles are in the range 50 to 150 nm, which is supported by EM analysis. Pyrene fluorescence experiments suggested that these soluble nanoparticles have hydrophobic cores, which may solubilize hydrophobic drug molecules. The polarity index (I(1)/I(3)) obtained from the pyrene fluorescence spectra and the conductometric measurements showed that the critical concentration of fatty acid salts needed to obtain nanoparticles are in the order of 10(-4) M. Further, the complexation of such poorly water-soluble amphiphilic surfactants with polymers offers a useful method for the immobilization of hydrophobic compounds towards water-soluble drug carrier formulations. The formation of water-soluble nanoparticles by the self-assembly of fatty acid salts upon interacting with oppositely charged poly(ethylene glycol)-based polyions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号