首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of oxidation of cis-[CrIII(gly)2(H2O)2]+ (gly = glycinate) by $ {\text{IO}}_{ 4}^{ - } $ has been studied in aqueous solutions. The reaction is first order in the chromium(III) complex concentration. The pseudo-first-order rate constant, k obs, showed a small change with increasing $ \left[ {{\text{IO}}_{ 4}^{ - } } \right] $ . The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of the chromium(III) complex is the reactive species. The reaction has been found to obey the following rate law: $ {\text{Rate}} = 2k^{\text{et}} K_{ 3} K_{ 4} \left[ {{\text{Cr}}\left( {\text{III}} \right)} \right]_{t} \left[ {{\text{IO}}_{ 4}^{ - } } \right]/\left\{ {\left[ {{\text{H}}^{ + } } \right] + K_{ 3} + K_{ 3} K_{ 4} \left[ {{\text{IO}}_{ 4}^{ - } } \right]} \right\} $ . Values of the intramolecular electron transfer constant, k et, the first deprotonation constant of cis-[CrIII(gly)2(H2O)2]+, K 3 and the equilibrium formation constant between cis-[CrIII(gly)2(H2O)(OH)] and $ {\text{IO}}_{ 4}^{ - } $ , K 4, have been determined. An inner-sphere mechanism has been proposed for the oxidation process. The thermodynamic activation parameters of the processes involved are reported.  相似文献   

2.
By means of the optimumM-term Hylleraastype wavefunctions with 1≦M≦6 we study various interelectronic properties of the Helium-like atoms with nuclear chargeZ=1, 2, 3, 5 and 10. Leth(u) denote the spherically averaged electron-pair density of a finite many-electron system. Firstly we found that the intracule functionh(u)/u α of the above-mentioned atoms is (i) monotonically decreasing from the origin for α≥α1 and (ii) convex for α≥α2, where α1 and α2 are positive constants which depend onZ andM. Then we show that the electron-electron cusp condition, i.e. thath′(0)=h(0), may be extended in the sense that the inequalityh(u)?h′(u)≧0 is valid for anyu≥0. Thirdly, it is shown that the inequalities involving three interelectronic moments 〈u n 〉 recently found by the authors are, at times, of great quality. Finally the goodness of some bounds to the characteristics of the maximum ofh(u) and to the total interelectronic repulsion energy is discussed in detail.  相似文献   

3.
The mechanism of reaction of the di-Ru-substituted polyoxometalate, {??-[(H2O)RuIII(??-OH)2RuIII(H2O)][X n+W10O36]}(8?n)?, I_X, with O2, i.e. I_X?+?O2????{??-[(·O)RuIV(??-OH)2RuIV(O·)][X n+W10O36]}(8?n)??+?2H2O, (1), was studied at the B3LYP density functional and self-consistent reaction field IEF-PCM (in aqueous solution) levels of theory. The effect of the nature of heteroatom X (where X?=?Si, P and, S) on the calculated energies and mechanism of the reaction (1) was elucidated. It was shown that the nature of X only slightly affects the reactivity of I_X with O2, which is a 4-electron oxidation process. The overall reaction (1): (a) proceeds with moderate energy barriers for all studied X??s [the calculated rate-determining barriers are X?=?Si (18.7?kcal/mol)?<?S (20.6?kcal/mol)?<?P (27.2?kcal/mol) in water, and X?=?S (18.7?kcal/mol)?<?P (21.4?kcal/mol)?<?Si (23.1?kcal/mol) in the gas phase] and (b) is exothermic [by X?=?Si [28.7 (22.1) kcal/mol]?>?P [21.4 (9.8) kcal/mol]?>?S [12.3 (5.0) kcal/mol]. The resulting $ \left\{ {\gamma - \left[ {\left( {^{ \cdot } {\text{O}}} \right) {\text{Ru}}^{\text{IV}} \left( {\mu - {\text{OH}}} \right)_{2} {\text{Ru}}^{\text{IV}} \left( {{\text{O}}^{ \cdot } } \right)} \right]\left[ {{\text{X}}^{{{\text{n}} + }} {\text{W}}_{10} {\text{O}}_{36} } \right]} \right\}^{{\left( {8 - {\text{n}}} \right) - }} $ , VI_X, complex was found to have two RuIV?=?O· units, rather than RuV?=?O units. The ??reverse?? reaction, i.e., water oxidation by VI_X is an endothermic process and unlikely to occur for X?=?Si and P, while it could occur for X?=?S under specific conditions. The lack of reactivity of VI_X biradical toward the water molecule leads to the formation of the stable [{Ru 4 IV O4(OH)2(H2O)4}[(??-XW10O36]2}m? dimer. This conclusion is consistent with our experimental findings; previously we prepared the $ \left[ {\left\{ {{\text{Ru}}_{4}^{\text{IV}} {\text{O}}_{4} ({\text{OH}})_{2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{4} } \right\}} \right[\left( {\gamma - {\text{XW}}_{10} {\text{O}}_{36} } \right]_{2} \}^{{{\text{m}} - }} $ dimers for X?=?Si (m?=?10) [Geletii et al. in Angew Chem Int Ed 47:3896?C3899, 2008 and J Am Chem Soc 131:17360?C17370, 2009] and P (m?=?8) [Besson et al. in Chem Comm 46:2784?C2786, 2010] and showed them to be very stable and efficient catalysts for the oxidation of water to O2.  相似文献   

4.
Three new binuclear copper complexes of formulae $ \left[ {{\text{Cu}}_{2}^{\text{II}} {\text{Pz}}_{2}^{\text{Me3}} {\text{Br}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (1), $ \left[ {{\text{Cu}}_{ 2}^{\text{II}} {\text{Pz}}_{2}^{\text{Ph2Me}} {\text{Cl}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (2) and $ \left[ {{\text{Cu}}_{2}^{\text{II}} \left( {{\text{Pz}}^{\text{PhMe}} } \right)_{ 4} {\text{Cl}}_{ 4} } \right] $ (3) (PzMe3?=?3,4,5-trimethylpyrazole, PzPh2Me?=?4-methyl-3,5-diphenylpyrazole and PzPhMe?=?3-methyl-5-phenylpyrazole) have been synthesized and characterized by chemical analysis, FTIR and 31P NMR spectroscopy and single-crystal X-ray diffraction. Complex 1 is a doubly bromo-bridged dimer, while complexes 2 and 3 are chloro-bridged dimers. The Cu(II) centers are in a distorted tetrahedral geometry for 1 and 2 and a distorted square pyramidal N2Cl3 environment for 3.  相似文献   

5.
The luminescence spectra of the polycrystalline compounds [Cr(CH2NH2COO)3 · H2O] and [Cr2(OH)2(CH2NH2COO)4] are investigated in the temperature range of 120K – 4.2K. From the known crystal structure (P21/c =D 2h /5 ) of the mononuclear compound assignment of the zero-phonon bands based on crystal field theory becomes possible. Both of the highly intense phosphorescence transitions are observed at \(P_1 = 14493 cm^{ - 1} ({}^2A'' \xrightarrow{{0.0}} {}^4A) and P_2 = 14428 cm^{ - 1} ({}^2A' \xrightarrow{{0.0}} {}^4A)\) . Assignment of the accompanying vibronic bands is made from the measured infrared data. Crystal field parameters Dq, B and C are determined from the luminescence and reflectance spectra. In the case of the binuclear compound the Cr3+-Cr3+ interaction via hydroxyl brides may be described by an axchange operator \(H_{ex} = - 2 \sum\limits_{ij} {J_{ij} S_i^a \cdot S_j^a } \) and from this the energy level diagram is calculated. Both observed strong phosphorescence bands at 14369 cm?1 and 14184 cm?1 are assigned to \(\left| {{}^2E \cdot {}^4A_2 \rangle _{s = 2} \xrightarrow{{0.0}}} \right| {}^4A_2 \cdot {}^4A_2 \rangle _{s = 2} and \left| {{}^2E \cdot {}^4A_2 \rangle _{s = 1} \xrightarrow{{0.0}}} \right| {}^4A_2 \cdot {}^4A_2 \rangle _{s = 1} \) transitions.  相似文献   

6.
The time-independent Hamiltonians ? 0 and ?=? 0 + V have a discrete spectrum, eigenvalues, and eigenvectors E s (o) , ¦s(o) resp. E s, ¦s〉. If the RS perturbation theory can be applied here then an operator \(\mathfrak{p}\) with the property $$\left| s \right\rangle ^{(n + 1)} = \frac{1}{{n + 1}}\mathfrak{p}\left| s \right\rangle ^{(n)} , E_s^{(n + 1)} = \frac{1}{{n + 1}}\mathfrak{p}E_s^{(n)} $$ exists where ¦s(n) and E s (n) denote the n-th order corrections of perturbation theory if E s (o) is nondegenerate. In the case of degeneracy the operation \(\mathfrak{p}\) remains defined and can always be used todetermine perturbation corrections of quantum mechanical expressions which are invariant in zerothorder under transformations of the basis in degenerate subspaces of ? 0. The equations $$\left| s \right\rangle = \sum\limits_n^{0,\infty } {\left| s \right\rangle ^{(n)} = e^\mathfrak{p} \left| s \right\rangle ^{(0)} } , E_s = \sum\limits_n^{0,\infty } {E_s^{(n)} } = e^\mathfrak{p} E_s^{(0)} $$ correspond to a basis transformation where nondegenerate eigenvectors ¦s∝> (o) and eigenvalues E s (o) of ? 0 transform into eigenvectors ¦s∝> and eigenvalues E s of ?. Examples show the usefulness of this formulation.  相似文献   

7.
The finite set of rate equations C m,n ' n,n-1 C m,n-1 (t)+α n,n C m,n (t)+α n,n+1 C m,n+1 (t), $$0 \leqslant m \leqslant N,0 \leqslant n \leqslant N,$$ where $$\alpha _{i,j}$$ are $\alpha _{j,j - 1} = A,\alpha _{j,j} = - \left( {A + B} \right),\alpha _{j,j + 1} = B$ , with $\alpha _{0,0} = - \alpha _{1,0} = - \alpha$ and $\alpha _{N,N} = - \alpha _{N - 1,N} = - b,\alpha _{0, - 1} = \alpha _{N,N + 1} = 0$ , subject to the initial condition $C_{m,n} \left( 0 \right) = \delta _{n,m}$ (Kronecker delta) for some $m$ , arises in a number of applications of mathematics and mathematical physics. We show that there are five sets of values of $a$ and $b$ for which the above system admits exact transient solutions.  相似文献   

8.
From extraction experiments and $ \gamma $ -activity measurements, the extraction constant corresponding to the equilibrium $ {\text{Eu}}^{ 3+ } \left( {\text{aq}} \right) + 3 {\text{A}}^{ - } \left( {\text{aq}} \right) + {\mathbf{1}}\left( {\text{nb}} \right) \Leftrightarrow {\mathbf{1}} \cdot {\text{Eu}}^{ 3+ } \left( {\text{nb}} \right) + 3 {\text{A}}^{ - } \left( {\text{nb}} \right) $ taking place in the two-phase water–nitrobenzene system ( $ {\text{A}}^{ - } = \text {CF}_{3} \text{SO}_{3}^{ - } $ ; 1 = macrocyclic lactam receptor—see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as $ { \log } K_{{{\text{ex}} }} ({\mathbf{1}} \cdot {\text{Eu}}^{ 3+ } ,{\text{ 3A}}^{ - } )\; = \; - 4. 9 \pm 0. 1 $ . Further, the stability constant of the Eu3+ cationic complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: $ { \log } \beta_{{{\text{nb}} }} ({\mathbf{1}} \cdot {\text{Eu}}^{ 3+ } ) \; = \; 8. 2 \pm 0. 1 $ . Finally, using DFT calculations, the most probable structure of the cationic complex species Eu3+ was derived. In the resulting Eu3+ complex, the “central” cation Eu3+ is bound by five bond interactions to two ethereal oxygen atoms and two carbonyl oxygens, as well as to one carbon atom of the corresponding benzene ring of the parent macrocyclic lactam receptor 1 via cation-π interaction.
Scheme 1
Structural formula of 2,20-dichloro-9,10,11,12,13,14-hexahydro-6H,22H-dibenzo[n,q][1,4,10,13]dioxadiaza-meta-xylyl-7,15(8H,16H)-dione (abbrev. 1)  相似文献   

9.
From extraction experiments and $ \gamma $ -activity measurements, the extraction constants corresponding to the general equilibrium Eu3+(aq) + 3 A?(aq) + L(nb) $ \Leftrightarrow $ EuL3+(nb) + 3A?(nb) taking place in the two-phase water–nitrobenzene system ( $ {\text{A}}^{ - } = {\text{CF}}_{ 3} {\text{SO}}_{3}^{ - } $ ; L = electroneutral receptors denoted by 1, 2, and 3 – see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the EuL3+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the series of 3 < 2 < 1.
Scheme 1
Structural formulas of N,N,N′,N′,N″,N″-hexacyclohexyl-4,4′,4″-propylidynetris(3-oxabutyramide) (1), bis[(12-crown-4)methyl] dodecylmethylmalonate (2), and bis[(benzo-15-crown-5)-4′-ylmethyl] pimelate (3)  相似文献   

10.
The electron density distribution in the crystal of 4,7-di-tert-butyl-2-phenyl-1,3,2-benzodioxaborole (1) was examined both experimentally and theoretically. According to the theory “Atoms in Molecules”, the B-O bonds are “intermediate” interactions (?2γ(r) > 0, h e(r) < 0), while the B-C(Ph), O-C, and C-C bonds are “shared” (?2γ(r) < 0, h e(r) < 0). The energies of intra- and intermolecular interactions in the crystals were estimated. Compound 1 is inert to oxygen, which agrees with the low HOMO energy (?6.26 eV).  相似文献   

11.
The isotherms of benzene sorption by the metal–organic coordination polymer [Zn2(bdc)2(dabco)] were studied within the temperature range 25–90 °C at pressures up to 75 torr. The maximal benzene content in [Zn2(bdc)2(dabco)] at room temperature was demonstrated to correspond to the composition [Zn2(bdc)2(dabco)]·3.8C6H6. It was established that the process of benzene desorption from the substance under investigation occurs in three stages. (1) Evaporation of benzene from the phase of variable composition (phase C) with compression and distortion of the unit cell (the composition of the phase C varies from [Zn2(bdc)2(dabco)]·3.8C6H6 to [Zn2(bdc)2(dabco)]·3.2C6H6). (2) The transformation of the phase C into phase P. The phase P has the same unit cell geometry as that for the empty framework. The maximal benzene content is [Zn2(bdc)2(dabco)]·1.0C6H6. (3) Benzene evaporation from the phase P of variable composition. We studied the temperature dependences of the equilibrium vapor pressure of benzene for the samples with compositions [Zn2(bdc)2(dabco)]·3.0(3)C6H6 and [Zn2(bdc)2(dabco)]·2.0(3)C6H6 within the temperature range 290–370 K. The thermodynamic parameters of benzene vaporization were determined for the latter compound ( $ \Updelta {\text{H}}_{{{\text{av}} .}}^{o} = 49\left( 1 \right) \,{\text{kJ }}\left( {{\text{moleC}}_{6} {\text{H}}_{6} } \right)^{ - 1} $ ; $ \Updelta {\text{S}}_{{{\text{av}} .}}^{^\circ } = 100\left( 3 \right)\, {\text{J}}\left( {{\text{moleC}}_{6} {\text{H}}_{6} {\text{K}}} \right)^{ - 1} $ ; $ \Updelta {\text{G}}_{298}^{^\circ } = 19.0\left( 2 \right)\, {\text{kJ}}\left( {{\text{moleC}}_{6} {\text{H}}_{6} } \right)^{ - 1} $ ).  相似文献   

12.
The combustion kinetics of waste capsicum stalk (WCS) in Western China is investigated through thermogravimetric analysis compared with sawdust and coal, and co-combustion of WCS with coal is also investigated. Results show that the ignition characteristics of WCS is better than that of sawdust and coal, and the activation energy E of WCS-volatile combustion and WCS-char combustion are 78.55?kJ?mol?1 and 44.59?kJ?mol?1. However, integrating the characteristics of ignition and burnout, the combustion characteristic factor (S N) of WCS is lower than that of sawdust. With the increasing in the heating rate, the ignition of WCS is delayed. Oxygen concentration $ C_{{{\text{O}}_{2} }} $ affects E and k 0 of volatile combustion largely under rich-oxygen condition, when $ C_{{{\text{O}}_{2} }} $ increases from 0.2 to 0.8, E has increased threefold and k 0 also intensively increases from 106 to 1013?C1022. Oppositely, effect of $ C_{{{\text{O}}_{2} }} $ on the E and k 0 of char combustion is little, and there is an exponential relationship $ S_{\text{N}} = 7. 1 2 8 \times 10^{ - 9} \times { \exp }(C_{{{\text{O}}_{2} }} /0. 3 6 8) - 6. 1 2 6 \times 10^{ - 9} $ between S N and $ C_{{{\text{O}}_{2} }} $ . For the tests of co-combustion, all the experimental and weighted-average curves coincide well, and there is no remarkable synergistic effect. With the increase of mixing ratio that WCS added, E and k 0 of volatile combustion increase, but correspondingly E and k 0 of char combustion decrease.  相似文献   

13.
14.
The heat capacity and density of solutions of lithium chloride, bromide, and iodide in N-methylpyrrolidone (I) were determined by calorimetry and densimetry techniques. The standard partial molar heat capacities and volumes ( $\overline {C^\circ _{p2} } $ and $\overline {V^\circ _2 } $ ) of lithium halides in I were calculated. The $\overline {C^\circ _{pi} } $ and $\overline {V^\circ _i } $ values for halogen and lithium ions in I were determined. The coordination numbers of the Li+, Cl?, Br?, and I? ions in solutions in I at 298.15 K were calculated.  相似文献   

15.
The densities of potassium bromide solutions in aqueous methanol mixtures have been measured with an error of at most ±(1 × 10?5) g/cm3 for methanol mole fractions x 2 of 0.06, 0.1, 0.3, or 0.6 and for the potassium bromide mole fractions up to about 2.65 × 10?2 at 278.15, 288.15, 298.15, 308.15, and 318.15 K. Limiting partial molar volumes $\overline V _3^\infty $ , excess molar volumes $\overline V _3^{E, \infty } $ , and expansibilities $\overline E _{p, 3}^\infty $ have been calculated for a stoichiometric mixture of solvated K+ and Br? ions in the mixed solvents. In the region of x 2 ≈ 0.25, $\overline E _{p, 3}^\infty $ changes its sign from positive to negative. The $\overline V _3^{E, \infty } $ (x 2) trend, on the whole, reflects the topologic features of the molecular structure of aqueous methanol associated through H-bonding.  相似文献   

16.
The solubilities and the relevant physicochemical properties of the systems MgCl2 + MgB6O10 + H2O and MgSO4 + MgB6O10 + H2O at 323.15 K were determined by the method of isothermal dissolution, and the phase diagrams and the diagrams of physicochemical properties versus composition were plotted. Both of the systems belong to a simple eutectic type, and neither double salts nor solid solution were found. Based on the extended Harvie-Weare (HW) model and its temperature-dependent equations, the value of the singlesalt Pitzer parameters ??(0), ??(1), ??(2), and C ? for MgCl2, MgSO4, and Mg(B6O7)(OH)6, the mixed ion-interaction parameters $\theta _{Cl, B_6 O_{10} }$ , $\theta _{SO_4 , B_6 O_{10} }$ , $\Psi _{Mg, Cl, B_6 O_{10} }$ , $\Psi _{Mg, SO_4 , B_6 O_{10} }$ , the average equilibrium constants (lnK aver) of solids in the systems and the Debye-Hückel parameter A ? were fitted. Using the Pitzer parameters and the average equilibrium constants of solids at equilibrium, the solubilities of the two systems at 323.15 K have been calculated. Comparisons between the calculated and experimental results show that the predicted solubilities agree well with experimental data.  相似文献   

17.
The 1,4-dichloro-(1) and 1,4-dibromo-(2) derivatives of naphthalene-2,3-diol crystallise in structures containing acetic acid or dioxane solvent molecules. X-ray crystallographic examination of the compound formed between1 and dioxane is reported here [(C10H6Cl2O2)2·(C4H8O2),P21/c,a=12.358(3),b=4.9930(7),c=19.167(4) Å,β=96.09(1)0,Z=2,R=0.035] and this structure is analysed in crystal engineering terms. The compound is a co-crystalline material involving two types of hydrogen bonding: one phenolic group participates in a $$\begin{gathered} ...{\text{OH }}...{\text{OH }}...{\text{OH}} \hfill \\ {\text{ | | |}} \hfill \\ {\text{ Ar Ar Ar}} \hfill \\ \end{gathered} $$ chain, while the second phenolic group hydrogen bonds to a dioxane. Extension of the hydrogen bonding network through the second dioxane oxygen results in heavily corrugated layers. Neighbouring layers interact by a combination of aromatic face-face and edge-face interactions similar to a partial coronene-type γ packing to complete the structure.  相似文献   

18.
Kinetic isotope effects for oxidation reactions of ethylene and cyclohexene in solutions of cationic palladium(ii) complexes in MeCN-H2O(D2O) systems, were measured. It was established that the ratio of the initial reaction rates ${{R_0^{H_2 O} } \mathord{\left/ {\vphantom {{R_0^{H_2 O} } {R_0^{D_2 O} }}} \right. \kern-0em} {R_0^{D_2 O} }} $ is equal to 1 for both reactions with the use of cationic complexes of the type Pd(MeCN) x (H2O)4?x 2+, which differs from oxidation reactions catalyzed by chloride palladium complexes in the same solutions, where the ratio ${{R_0^{H_2 O} } \mathord{\left/ {\vphantom {{R_0^{H_2 O} } {R_0^{D_2 O} }}} \right. \kern-0em} {R_0^{D_2 O} }} $ = 5.0±0.16 and 4.73±0.14 at H+ molar fraction of 0.48 and 0.16, respectively (H+ molar fraction was calculated based on the sum of [H+] and [D+]).  相似文献   

19.
Anhydrous and partially hydrated acid trinuclear trifluoroacetates of divalent transition metals of the composition [M3(CF3COO)6(CF3COOH)6)](CF3COOH) and [M3(CF3COO)6(CF3COOH)2(H2O)4)](CF3COOH)2, respectively, where M = Co (I, III) Ni (II, IV), were synthesized and studied by X-ray diffraction. Complexes I and II were obtained by crystallization from solutions of M(CF3COO)2 · 4H2O in trifluoroacetic anhydride; complexes III and IV were synthesized under the same conditions with the use of 99% trifluoroacetic acid as a solvent. Crystals I are triclinic: space group $P\bar 1$ , a = 13.199(6) Å, b = 14.649(6) Å, c = 15.818(6) Å, α = 90.04(4)°, β = 114.32(4)°, γ = 108.55(4)°, V = 2611.3(19) Å3, Z = 2, R = 0.0480. Crystals II are trigonal: space group $R\bar 3$ , a = 13.307(2) Å, c = 53.13(1) Å, V = 8148(2) Å3, Z = 6, R = 0.1112. Crystals III are triclinic: space group $P\bar 1$ , a = 9.001(8) Å, b = 10.379(9) Å, c = 12.119(9) Å, α = 83.67(5)°, β = 72.33(5)°, γ = 83.44(5)°, V = 1068.3(15) Å3, Z = 1 Å, R = 0.1031. Crystals IV are triclinic: space group $P\bar 1$ , a = 9.121(18) Å, b = 10.379(2) Å, c = 12.109(2) Å, α = 84.59(3)°, β = 72.20(3)°, γ = 82.80(3)°, V = 1080.94(40) Å3, Z = 1, R = 0.0334.  相似文献   

20.
Different tetraalkylammonium, viz. N+(CH3)4, N+(C2H5)4, N+(C3H7)4, N+(C4H9)4 along with simple ammonium salts of bis (2-ethylhexyl) sulfosuccinic acid have been prepared by ion-exchange technique. The critical micelle concentration of surfactants with varied counterions have been determined by measuring surface tension and conductivity within the temperature range 283–313 K. Counterion ionization constant, α, and thermodynamic parameters for micellization process viz., $\Delta G_m^{\text{0}} $ , $\Delta H_m^{\text{0}} $ , and $\Delta S_m^{\text{0}} $ and also the surface parameters, Γmax and Amin, in aqueous solution have been determined. Large negative $\Delta G_m^{\text{0}} $ of micellization for all the above counterions supports the spontaneity of micellization. The value of standard free energy, $\Delta G_m^{\text{0}} $ , for different counterions followed the order $${\text{N}}^{\text{ + }} \left( {{\text{CH}}_{\text{3}} } \right)_4 >{\text{NH}}_{\text{4}}^{\text{ + }} >{\text{Na}}^{\text{ + }} >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{2}} {\text{H}}_5 } \right)_{\text{4}} {\text{ $>$ N}}^{\text{ + }} \left( {{\text{C}}_{\text{3}} {\text{H}}_{\text{7}} } \right)_4 >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{4}} {\text{H}}_{\text{9}} } \right)_4 $$ , at a given temperature. This result can be well explained in terms of bulkiness and nature of hydration of the counterion together with hydrophobic and electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号