首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fullerols of C60 and of C70 [C60(OH)n, C70(OH)m], water-soluble fullerene derivatives, unlike some other fullerene derivatives (such as C60 (C4H6O), C60 (C3H7N) and C60 [C(COOEt)2]x), do not result in excited triplet state but in ionization via monophotonic process in aqueous solutions with 248 nm laser. The quantum yields of formation of hydrated electron (Φe ) are determined to be 0.08 and 0.11 for fullerols of C60 and of C70 respectively at room temperature (ca. 15°C) with KI solution used as reference. By laser flash photolysis and oxidation of sulfate radical anion SO4 , the fullerol radical cation or neutral radical of C60 is confirmed to be existent and the transient absorption spectra of fullerol radical cation of C70 are observed for the first time. Project supported by the National Natural Science Foundation of China  相似文献   

2.
Photo-ionisation and -fragmentation ofC 60 by 15 ns excimer laser pulses at 308 nm and 193 nm as well as 0.8 ps laser pulses at 193 nm has been studied with reflectron time-of-flight mass spectrometry. The initial fragmentation process is ejection ofC n,n>2, as opposed to successiveC 2 evaporation. Studies of the relative intensities of metastable fragmentation processes compared with direct fragmentation provide new insight into the fragmentation mechanism and provide a thermometer for the internal energy ofC 60 + prior to fragmentation. The proposed mechanism is in agreement with measurements of the fragment ion kinetic energies. The results are compared with molecular dynamics simulations.  相似文献   

3.
The results of a detailed study of the photodissociation of carbon cluster ions, C 3 + to C 20 + , are presented and discussed. The experiments were performed using internally cold cluster ions derived from pulsed laser evaporation of a graphite target rod in a helium buffer gas followed by supersonic expansion. The mass selected clusters were photodissociated using 248 nm and 351 nm light from an excimer laser. Photofragment branching ratios, photodissociation cross sections and data on the laser fluence dependence of photodissociation are reported. For almost all initial clusters, C n + , the dominant photodissociation pathway was observed to be loss of a C3 unit to give a C n?3 + ion. This observation is interpreted as indicating that dissociation occurs by a statistical unimolecular process rather than by direct photodissociation. The photodissociation was found to be linear with laser fluence forn>5 with 248 nm and 351 nm light; quadratic forn=5 for 248 nm and 351 nm; and linear forn=4 at 248 nm. Dissociation energies for the carbon cluster ions implied by these results are discussed. The photodissociation cross sections were found to change dramatically with cluster size and with the wavelength of the photodissociating light.  相似文献   

4.
A neutral C60 fullerene beam is ionised by 308 nm laser pulses. For each cluster sizeC n + , 0n60 of the typical bimodal mass distributions known from the literature [1] velocity distributions have been determined by a time of flight method. A consistent interpretation of the measured mean velocities is obtained when binary fission of the parent molecule is assumed to be responsible for the fragmentation patterns, the total kinetic energy release being 0.45±0.1 eV independent of fragment mass and of laser fluence.  相似文献   

5.
Using time‐of‐flight mass spectrometry (TOFMS), laser‐induced photochemistry of ethyl bromide clusters has been investigated at three different wavelengths (viz. 266, 355 and 532 nm) utilizing nanosecond laser pulses of ~5 × 109 W/cm2. An interesting finding of the present work is the observation of multiply charged atomic ions of carbon and bromine at 355 and 532 nm, arising from the Coulomb explosion of (C2H5Br)n clusters. At 266 nm, however, the (C2H5Br)n clusters were found to exhibit the usual multiphoton dissociation/ionization behaviour. The TOFMS studies are complemented by measuring the total charge density of the ionized volume at 266, 355 and 532 nm, using the parallel plate method, and the charge densities were found to be ~2 × 109, 6 × 109 and 2 × 1011 charges/cm3, respectively. The significantly higher charge density and the presence of energetic, multiply charged atomic ions at 532 nm are explained by the higher ponderomotive energy of the 532 nm photon, coupled with the Coulomb stability of the residual multiply charged ethyl bromide clusters generated upon laser irradiation, due to their larger effective cluster size at 532 nm than at 355 and 266 nm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
《Chemical physics》2001,263(2-3):401-414
We have recorded the dispersed fluorescence and the fluorescence excitation spectra of C60 in toluene matrices at 5 K. Upon excitation with the green Ar+ laser line (λ=514 nm) we obtained for the first time in this matrix well resolved visible fluorescence spectra which we have compared with those observed in other low temperature matrices. Our spectra were interpreted and assigned using theoretical assessments of vibronic activities of transitions between the three lowest excited electronic states 1T1g, 1T2g, 1Gg and the totally symmetric ground state, and on the basis of a single 00 level which has pseudo-Jahn–Teller (JT) components of the three near-degenerate excited states. The fluorescence spectra exhibit prominent JT induced hg(1) progressions, Herzberg–Teller-induced hu and other ungerade mode vibrations, including a very active t1u(4) mode. Excitation wavelength independent bands are assigned to the fluorescence of C60 molecules in toluene microcrystals embedded in the toluene glass whereas excitation wavelength dependent features are interpreted as originating from C60 molecules isolated in the toluene glass itself. These interpretations are supported by the results of spectrally selective detected fluorescence excitation spectra.  相似文献   

7.
We investigate two reaction channels of C60, excited by a pulsed laser at 355 nm: i) The relative and absolute yields of even-sized fragment ions are measured over a wide range of laser fluences. At low fluence we find a dramatic dependence of the abundance ratio of C n?2 + versus C n + . This result argues against the notion that unimolecular emission of C4 or larger fragments contributes significantly to the production of even-sized fragment ions. ii) We count the number of delayed electrons emitted from C60, or one of its products, after photo-excitation. For high laser fluences, this number reaches a value of (2.6 ± 1.1)% per photoexcited C60. This sets a lower bound to the ratio of effective rate constants, ke(E* )/∑kj(E*), where ke refers to electron emission, and the sum in the denominator extends over all reaction channels.  相似文献   

8.
The interaction of the PPh3-stabilized iridium trihydrido complex H3Ir(PPh3)3 with fullerene C60 under thermal and photochemical excitation was studied under anaerobic conditions. Heating (100 °C) or photolysis by the visible light of the H3Ir(PPh3)3-C60 650 nm, which are characteristic of the ·2-coordinated C60 in several fullerene-containing metal complexes. The kinetic behavior of the H3Ir(PPh3)3)-C60 system in benzonitrile was investigated using a Nd3+-YAG laser (λ=532 nm). The quenching rate constant determined from the dependence of the effective first-order quenching constant of C60(T) on the concentration of H3Ir(PPh3)3 is equal to 1.1·109 L mol−1 s−1. The quenching of C60(T) by the iridium hydridophosphine complex follows the reductive mechanism to form a C60 monoanion. The ESR signal with g=2.000 and ΔH=0.17 mT (at room temperature) and characteristic absorption bands in the near-IR region at 940, 1004, and 1076 nm support the formation of the C60 monoanion during the interaction of the triplet-excited C60 with H3Ir(PPh3)3. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2145–2148, December, 1997.  相似文献   

9.
Irradiation of SO2 with the focused output of a KrF laser (248 nm) gave rise to intense emission bands from SO A (3Πi), formed by excitation of SO X(3Σ?). The latter is produced via sequential two-photon excitation of SO2 leading to fragmentation. Quenching data for SO2 and He are presented. The application of these results for an optically pumped SO laser is considered.  相似文献   

10.
Axial coordination of fullerenopyrrolidine bearing the donor imidazolyl group, cis-3-(4-imidazolylphenyl)-1-(pyridin-2-yl)[60]fullereno[1,2-c]pyrrolidine (C60∼Im), with zinc meso-tetraphenylporphyrinate (ZnTPP) in an o-dichlorobenzene solution affords a non-covalently bonded donor-acceptor dyad ZnTPP-C60∼Im. The photochemical behavior of the ZnTPP-C60∼Im complex was studied by fluorescence (excitation at λ = 420 nm) and laser kinetic spectroscopy (excitation at λ = 532 nm, 12 ns). The formation constant of the 1: 1 porphyrin-fullerenopyrrolidine complex determined from quenching of ZnTPP fluorescence assuming static intracomplex quenching is 1.6·104 L mol−1. Absorption spectra of the excited states in the system consisting of ZnTPP and Im∼C60 (ZnTPP/C60∼Im) were measured in solution from 380 to 1000 nm. The quenching constant of the triplet-excited ZnTPP with fullerenopyrrolidine C60∼Im was determined. The results obtained indicate the formation of the triplet exciplex {PL}* ⇌ {Pδ+…Lδ−} in the ZnTPP/C60∼Im system upon laser photolysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1541–1547, September, 2006.  相似文献   

11.
The transformation of the mass spectra of the laser-desorbed C60 and C70 samples with a successive increase in the laser power, resulting in an increase in the degree of excitation of C60 (C70) and in the number of the particles in the laser plume, was studied. Unusual metastable clusters (C60 + C2) and (C70 + C2) are formed even at a minimum laser power and begin to dissociate after 0.5 s following a short (3 ns) laser pulse. An increase in the laser power results in the appearance of peaks of metastable clusters C62 (C72) with the statistically normal lifetime without a delay of dissociation. A further increase in the laser power produces metastable clusters C60k–2n and C70k–2n (k = 2, 3) formed without a lag from the dimers and trimers of C60 (C70) by the ejection of a number of C2 required for the stabilization of the C2 molecules. The peak of C70 appears simultaneously with the appearance of the (C60)2–2n peaks upon the laser desorption of pure C60. These findings provide evidence for the growth of the excited fullerene clusters by coalescence and subsequent stabilization due to the ejection of a small fragment rather than by the implantation of C2 into the fullerene framework. This mechanism of cluster growth should be taken into consideration in modeling fullerene formation in an electric arc reactor, because the clusters formed under these conditions have a substantial excess internal energy.  相似文献   

12.
While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410×10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are carried out in the presence of C_(60) using the W catalyst under the same conditions.The polymers are soluble in common organic solvents such as THF, chloroform, and toluene. Molecularstructures of the polymers are characterized by FT-IR, UV, NMR, GPC and XRD, and it is found that C_(60) iscopolymerized with PP. Thus C_(60) plays the dual roles of comonomer and cocatalyst in the polymerizationreaction. C_(60) contents of the copolymers can be easily changed by varying the C_(60) amounts in the feedmixtures. The copolymers effectively limit strong 532 nm laser pulses, whose limiting performance issuperior to that of parent C_(60).  相似文献   

13.
Multiphoton excitation of CS2 by means of a frequency-narrowed tunable KrF laser (248 nm) leads to ionisation and photofragment fluorescence from CS(A 1Π) and CS(d3Δ). Emission spectra can be obtained without any interference from the strong laser-induced flourescence from CS(X1Σ+) observed in previous work with broad-band KrF laser. Excitation and fragmentation mechanisms are discussed within the context of higher Rydberg states of CS2.  相似文献   

14.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

15.
The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry. The photofragments are detected by multiphoton ionization using an intense laser field centered at 800 nm. A dissociation time of 38±50 fs was measured from the rising time of the co-fragments of toluene radical (C7H7) and iodine atom (I), which is attributed to the averaged time needed for the C-I bond breaking for the simultaneously excited nσ* and ππ* states by 266 nm pump light. In addition, a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated nσ* and ππ* states. And a rise time of 40±50 fs is extracted from the fitting of time-dependent I+ transient, which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm, suggesting that the main dissociative products are ground-state iodine atoms.  相似文献   

16.
We investigate the electron dynamics of Na9 + excited by strong fs laser pulses and fast proton collisions. Non-perturbative numerical simulations are performed using time-dependent density-functional methods on a semiclassical and fully quantal level. Both excitation mechanisms induce pronounced dipole oscillations accompanied by rapid ionization.  相似文献   

17.
We report on studies of multiple ionization and fragmentation of free Hgn (n ≤ 80) clusters in the femtosecond time domain at wavelengths ranging from 255 nm to 800 nm. After excitation by single laser pulses of an intensity of 5 * 1011 W/cm2 we observe prompt formation of multiply charged Hgn clusters. The Hgn cluster size distribution observed up to n ≈ 80 shows in additon to singly charged also doubly and triply charged clusters with a surprisingly high amount of doubly charged clusters. The measured cluster size distribution is nearly independent of laser wavelengths. For higher laser intensities (2 * 1012 W/cm2) we observe multiply charged mercury atoms up to Hg5+. At 1013 W/cm2 molecules and clusters eventually disappear due to Coulomb explosion and complete Fragmentation. Only atomic ions, singly and multiply charged, with high kinetic energies are then observed.  相似文献   

18.
We have developed and applied a model of energy transfer to noble gas atoms due to a resonance mechanism within a continuum of plasmon oscillation induced by intense laser pulses. The model is based on a generalization to 3D of the 1D many-body RPA method of Tomonaga. Total cross sections for laser energy absorption, the saturation intensities for ionization, mean energy transfer and degree of ionization of several noble gases, Xe, Kr, Ar, Ne are obtained for λ = 193 nm and λ = 1064 nm for a short Gaussian laser pulse. Probability distribution of absorption of a given number of photons in Xe is also obtained for λ = 193 nm andI 0 = 1014 W/cm2. The results are consistent with the rapid energy transfer necessary for multiple ionization at these frequencies.  相似文献   

19.
Single and double ionization of magnesium and calcium atoms following Nd: YAG laser multiphoton excitation at 1064 and 532 nm have been studied by employing pulses of 35 ps and 200 ps duration at intensities of the order of 1010–2×1013 W/cm2. The dependence of ion formation on the laser intensity has been measured and the slopes of the linear parts of the log-log plots and the ratios of saturation intensities for two pulse durations have been compared with the predictions of the scaling law. No evidence for a pure direct double ionization process has been obtained.  相似文献   

20.
We report on the fragmentation of ionized pyridine (C5H5N) molecules by focused 50 fs, 800 nm laser pulses. Such ionization produces several metastable ionic states that fragment within the field-free drift region of a reflectron-type time of flight mass spectrometer, with one particular metastable dissociation being the leading fragmentation process. Because the time of flight is no longer dependent in a simple way on the mass of the ion, the metastable decay is manifested as an unfocused peak on the mass spectrum that appears at a time of flight not corresponding to an integer mass. A previously-developed method is used to identify the precursor and final masses of these ions. The metastable process that creates the most prevalent peak is shown to be C5H5N+ → C4H4+ + HCN. Simulations confirm this result and place restrictions on the processes for several other observed metastable reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号