首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

2.
The electronic spectrum of C60 is calculated using quantum mechanical methods. The first allowed transition in C60 is calculated at an energy of 3.5 eV and with an oscillator strength of 0.09. Several transitions are found at higher energies with comparatively strong oscillator strengths, the strongest one being at 5.78 eV (λ=214 nm). The calculated energy level diagram of C60 is also used to predict wavelengths for transitions in C 60 + and C 60 ? . A comparison is made with some recently observed diffuse interstellar bands at 1180 nm and 1320 nm, which have been speculated to originate from C 60 + .  相似文献   

3.
Low energy ion beam techniques have been used to perform a detailed study of the reactions of Al 25 + and Si 25 + with a range of simple molecules (D2, CH4, O2, C2H4, CO and N2). The reactions were studied over a center of mass collision energy range from 0.2eV up to 7eV. Activation barriers for chemisorption onto the clusters were deduced from the experimental results. The activation barriers for chemisorption on Al 25 + and Si 25 + are generally similar and show a qualitative correlation with the electronic properties of the reactant molecule. However, the products of the chemical reactions of Al 25 + and Si 25 + which result from cluster fragmentation are quite different. Si 25 + shows a tendency to undergo fission as observed in a number of recent studies of the dissociation of the bare clusters.  相似文献   

4.
The adiabatic bound state of an excess electron is calculated for a water cluster (H2O) 8 ? in the gas phase using the DFT-B3LYP method with the extended 6-311++G(3df,3pd) basis set. For the liquid phase the calculation is performed in the polarizable continuum model (PCM) with regard to the solvent effect (water, ? = 78.38) in the supermolecule-continuum approximation. The value calculated by DFT-B3LYP for the vertical binding energy (VBE) of an excess electron in the anionic cluster (VBE(H2O) 8 ? = 0.59 eV) agrees well with the experimental value of 0.44 eV obtained from photoelectron spectra in the gas phase. The VBE value of the excess electron calculated by PCM-B3LYP for the (H2O) 8 ? cluster in the liquid phase (VBE = 1.70 eV) corresponds well to the absorption band maximum λmax = 715 nm (VBE = 1.73 eV) in the optical spectrum of the hydrated electron hydr e hydr ? . Estimating the adiabatic binding energy (ABE)e hydr t- in the (H2O) 8 ? cluster (ABE = 1.63 eV), we obtain good agreement with the experimental free energy of electron hydration ΔG 298 0 (e hydr ? ) = 1.61 eV. The local model (H2O) 8 2? of the hydrated dielectron is considered in the supermolecule-continuum approximation. It is shown that the hydrated electron and dielectron have the same characteristic local structure: -O-H{↑}H-O- and -O-H{↑↓}H-O-respectively.  相似文献   

5.
Quantum chemical ab initio calculations have been performed for the vertical excitation energies and oscillator strengths of all low-lying electronically excited states of small helium cluster ions, He n + ,n=2, ..., 7. The geometrical structures of the ions were fixed at the equilibrium geometries of the respective ground states, for He 4 + and He 5 + also one alternative structure was considered. The low-lying excited states can be classified into two categories: the electronic transition can occur either within the central He 2 + or He 3 + unit or from the peripheral weakly bound He atoms to this unit. The latter transitions are very weak (f≈0.001), closely spaced, with vertical excitation energies of about 5.7 eV. The He 2 + and He 3 + units have strong transitions at 9.93 and 5.55 eV, respectively; these transitions are only slightly blue-shifted if He 2 + or He 3 + are placed as “chromophores” into the centre of a larger He n + cluster. The large difference in the vertical excitation energy of the strong transition should enable an experimental decision of the question whether the cluster ions have He 2 + or He 3 + cores.  相似文献   

6.
The collision-induced dissociation of the adduct ions C60(C4H8) 2 2+ and C60(C4H8) 3 2+ formed by sequential reactions of C 60 2+ with 1-butene has been investigated by using a selected-ion flow tube (SIFT) apparatus. Experiments at 295 ± 2 K in 0.35 ± 0.02 torr of helium indicated that C 60 2+ adds at least five molecules of 1-butene in a sequential fashion with rates that decrease with the number of molecules added. Collision-induced dissociation experiments in which the downstream sampling nose cone of the SIFT was biased with respect to the flow tube indicated that the adduct ions C60(C4H8) 2 2+ and C60(C4H8) 3 2+ dissociate into C 60 ·+ and (C4H8) 2 ·+ and (C4H8) 3 ·+ , respectively. These observations provide evidence for the occurrence of charge separation in the derivatization of C60 dications and support the “ball-and-chain” mechanism first proposed by Wang et al. in 1992 for the sequential multiple addition of 1,3-butadiene to C 60 2+ and C 70 2+ .  相似文献   

7.
Photoelectrons from mass-identified jet-cooled tin and lead cluster anions (Sn n ? , Pb n ? ) are detached by ultraviolet laser light (=3.68 eV). The photoelectron energy spectra give the detachment energies of ground state cluster anions (electron affinities) as well as excitation energies of neutral clusters in the geometry of the anions. The energy spectra for Sn n ? are dominated by flat thresholds with ann-dependence similar to that of other group IV clusters. In contrast, for Pb n ? we find pronounced narrow lines close to threshold, generally followed by a 0.3–1.4 eV gap which indicates closed-shell behaviour of Pb n ? for nearly alln.  相似文献   

8.
This article investigates the influence of the organic film thickness on the characteristic and molecular ion yields of polystyrene (PS), in combination with two different substrates (Si, Au) or gold condensation (MetA-SIMS), and for atomic (Ga+) and polyatomic (C 60 + ) projectile bombardment. PS oligomer (m/z ~ 2000 Da) layers were prepared with various thicknesses ranging from 1 up to 45 nm on both substrates. Pristine samples on Si were also metallized by evaporating gold with three different thicknesses (0.5, 2, and 6 nm). Secondary ion mass spectrometry was performed using 12 keV atomic Ga+ and C 60 + projectiles. The results show that upon Ga+ bombardment, the yield of the fingerprint fragment C7H 7 + increases as the PS coverage increases and reaches its maximum for a thickness that corresponds to a complete monolayer (~3.5 nm). Beyond the maximum, the yields decrease strongly and become constant for layers thicker than 12 nm. In contrast, upon C 60 + bombardment, the C7H 7 + yields increase up to the monolayer coverage and they remain constant for higher thicknesses. A strong yield enhancement is confirmed upon Ga+ analysis of gold-metallized layers but yields decrease continuously with the gold coverage for C 60 + bombardment. Upon Ga+ bombardment, the maximum PS fingerprint ion yields are obtained using a monolayer spin-coated on gold, whereas for C 60 + , the best results are obtained with at least one monolayer, irrespective of the substrate and without any other treatment. The different behaviors are tentatively explained by arguments involving the different energy deposition mechanisms of both projectiles.  相似文献   

9.
SCF and CEPA calculations are applied to study the structure of small He cluster ions, He n + ,n=2, 3, 4, 5 and some low-lying Rydberg states of He4. The effect of electron correlation upon the equilibrium structures and binding energies is discussed. He 3 + has a linear symmetric equilibrium geometry with a bond length of 2.35a 0 and a binding energyD e =0.165 eV with respect to He 2 + +He (experimentally:D 0=0.17 eV which corresponds toD e ≈0.20 eV). He 4 + is a very floppy molecular ion with several energetically very similar geometrical configurations. Our CEPA calculations yield a T-shaped form with a He 3 + centre (R e = 2.35a 0) and one inductively bound He atom (4.39a 0 from the central He atom of He 3 + ) as equilibrium structure. Its binding energy with respect to He 3 + +He is 0.031 eV. A linear symmetric configuration consisting of a He 2 + centre with a bond length of 2.10a 0 and two inductively bound He atoms (4.20a 0 from the centre of He 2 + ) is only 0.02–0.03 eV higher in energy. We expect that in larger He cluster ions structures with He 2 + and He 3 + centres andn?2 orn?3 inductively bound He atoms have nearly the same energies. In He4 a low-lying metastable Rydberg state (3 Π symmetry for linear He 4 * ,3 B 1 for the T-shaped form) exists which is slightly stronger bound with respect to He 3 * +He than the corresponding ion.  相似文献   

10.
A direct measurement of collisionally induced fission of C 60 2+ has been performed. We have measured coincidences between various charged fragments resulting from collisions between C 60 2+ and He atoms. The measurements show that C 60 2+ not only emits C2 units but also breaks up into larger, singly charged parts. In this paper, we report on coincidences between C n + (2≦n≦9) and C m + (42≦m≦48) fragment ions.  相似文献   

11.
Reactivity of positively charged cobalt cluster ions (Co n + ,n=2?22), produce by laser vaporization, with various gas samples (CH4, N2, H2, C2H4, and C2H2) were systematically investigated by using a fast-flow reactor. The reactivity of Co n + with the various gas samples is qualitatively consistent with the adsorption rate of the gas to cobalt metal surfaces. Co n + highly reacts with C2H2 as characterized by the adsorption rate to metal surfaces, and it indicates no size dependence. In contrast, the reactions of Co n + with the other gas samples indicate a similar cluster size dependence; atn=4, 5, and 10?15, Co n + highly reacts. The difference can be explained by the amount of the activation energy for chemisorption reaction. Compared with neutral cobalt clusters, the size dependence is almost similar except for Co 4 + and Co 5 + . The reactivity enhancement of Co 4 + and Co 5 + indicates that the cobalt cluster ions are presumed to have an active site for chemisorption atn=4 and 5, induced by the influence of positive charge.  相似文献   

12.
Fragmentation of sodium cluster ions (Na x + ,x<42) was studied via photoionisation of neutral precursors. Expansions of metal vapor out of cylindrical and conical nozzles yielded supersonic beams with differing cluster compositions. Measurements of photoionisation efficiency curves in the 3–6 eV range for both types of expansion allow quantitative separation of direct ionisation and unimolecular dissociation contributions to specific ion signals. Data for Na 8 + and Na 7 + are analysed to yield lower limits on bond energies. Results obtained for larger clusters are also discussed.  相似文献   

13.
Doubly charged NH 3 ++ cations were produced by double photoionization of neutral ammonia molecules by using the synchrotron radiation from ACO as a photon source of variable energy in the 35–49 eV energy range. The fragmentation of NH 3 ++ was studied by the photoion-photoion coincidence (PIPICO) method. NH 3 ++ cations were produced in the \(\tilde X^1 \) A 1 and \(\tilde B^1 \) electronic states of which the onset energies were measured at, respectively, 35.4±0.5 eV and 44.5±0.5 eV. It was shown that the NH 3 ++ ions, initially produced in their \(\tilde X^1 \) A 1 state, rapidly dissociate (in less than 50 ns), into NH 2 + + H+. Furthermore, the comparison with results obtained by other methods indicates that NH 3 ++ ions can either be long-lived (τ>10 µs) or slowly dissociating (1 µs<τ<10 µs) or rapidly dissociating (τ<50 ns), depending on their geometry and/or internal energy in their \(\tilde X^1 \) E A 1 electronic state.  相似文献   

14.
The first three reactions of the Calcote mechanism for soot formation, that is, C3H 3 + +C2H2→C5H 5 + , C5H 5 + →C5H 3 + H2, and C5H 3 + +C2H2→C7H 5 + , have been studied based on chemi-ions withdrawn directly from a premixed methane-oxygen flame by supersonic molecular beam sampling. The first reaction is reversible and involves the formation of a specific encounter complex sensitive to pressure and ion kinetic energy. The second reaction appears to require large amounts of internal energy in the C5H 5 + ion to proceed. The third reaction is reversible; however, in contrast to the initiating reaction, the C5H 3 + ion formed from the [C7H 5 + ]* complex exhibits a much lower reactivity. The conclusions are based on ion-molecule reactions as well as collision activation mass spectrometry of isolated chemi-ions. In addition, the product distributions as functions of pressure and ion kinetic energy were studied.  相似文献   

15.
Membrane introduction mass spectrometry (MIMS) is used to sample free radicals generated by thermolysis at atmospheric pressure. This is done by heating the solid sample in a custom-made probe that is fitted with a silicone membrane to allow selective and rapid introduction of the pyrolysates into the ion source of a triple quadrupole mass spectrometer. Phenyldiazonium radical (C6H5N 2 · ) and some of its ring-substituted analogs, the methoxy anilino radical CH3OC6H4NH·, and aryl radicals are generated by gas phase thermolysis of symmetrical aryl diazoamino compounds (ArNH-N2Ar). The radicals are identified by measurement of their ionization energies (IE) using threshold ionization efficiency data. A linear correlation between the ionization energy of the phenyldiazonium radicals and their Brown σ+ values is observed, and this confirms the formation of these species and validates the applicability of MIMS in sampling these radicals. The ionization energies of the aryldiazonium radicals are estimated as IE (p-CH3O-C6H4N 2 · ), 6.74 ± 0.2 eV; IE (p-CH3-C6H4N 2 · ), 7.72 ± 0.2 eV; IE (C6H5N 2 · ), 7.89 ± 0.2 eV; IE (m-Cl-C6H4N 2 · ), 7.91 ± 0.2 eV; IE (p-F-C6H 4 · N 2 · ), 8.03 ± 0.2 eV; and IE (m-NO2-C6H4N 2 · ), 8.90 = 0.2 eV. The ionization energies of the aryl radicals are estimated as IE (p-CH3O-C6H 4 · ), 7.33 ± 0.2 eV; IE (p-CH3-C6H 4 · ), 8.31 ± 0.2 eV; IE (C6H 5 · ), 8.44 ± 0.2 eV; IE (m-Cl-C6H 4 · ), 8.50 ± 0.2 eV and IE (p-F-C6H 4 · ), 8.54 ± 0.2 eV. Also, the ionization energy of the p-methoxyanilino radical (p-CH3O-C6H4NH·) is estimated as 7.63 ± 0.2 eV.  相似文献   

16.
Configuration interaction calculations are carried out to study the potential energy surface for the system Ar-Ar 2 + . An all-electron as well as a pseudopotential treatment is employed. It is found that in the perpendicular Ar approach the Ar 2 + partner remains essentially unchanged and the potential can be characterized by an electrostatic ion-induced dipole interaction. In the collinear mode of Ar approach the Ar 2 + bond separation increases considerably, the charge is redistributed and the interaction can be characterized as chemical bonding. The minimum on the surface is found to be the linear symmetric molecule with bond lengths of 2.62 Å. The optimum structure in the perpendicular approach lies 0.13 eV above the minimum and is the T-shaped molecule in which the Ar is 3.65 Å away from the midpoint of the Ar 2 + (r=2.46 Å) system; the best equilateral triangle structure has a bond length of 2.99 Å but is found to lie 0.64 eV above the Ar 3 + minimum. The dissociation energy into Ar 2 + + Ar is calculated to be 0.16 eV in reasonable agreement with experimental values of 0.21 eV. The potential curves for the four lowest states of Ar 2 + are also treated.  相似文献   

17.
Highly monochromatized electrons (with 30 meV FWHM) are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O2)n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O2)n +e → O 2 ? varies inversely with the electron energy, indicative of s-wave electron capture to (O2)n. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Despite the initially large excess of oxygen molecules in the neutral clusters the dominant attachment products are undissociated cluster ions (O3) m ? including the O 3 ? monomer while oxygen cluster ions (O2) n ? appear with comparatively low intensity.  相似文献   

18.
Metastable ion (MI) and collision-induced dissociation (CID) mass spectra have been recorded and compared for all nine C4H12Si+. isomers. The (Me)4Si+., t-BuSiH 3 +. , s-BuSiH 3 + , and (Me)2EtSiH+. isomers have unique MI and CID mass spectra. The MI mass spectra, including the kinetic energy release values, of (Me)(i-Pr)SiH 2 +. and (Me)(n-Pr)SiH 2 +. are identical, which implies isomerization. MI data also suggest that a fraction of the n-BuSiH 3 +. ions rearrange into branched (Me)2EtSiH+. ions and a fraction of the n-BuSiH 3 +. ions rearrange into branched s-BuSiH 3 +. ions. A comparison with the isomeric C5H 12 +. pentanes reveals a crucial difference: H2 loss occurs for n-BuSiH 3 +. , i-BuSiH 3 +. , s-BuSiH 3 +. , (Me)(n-Pr)SiH 2 +. , (Me)(i-Pr)SiH 2 +. , and Et2SiH 2 +. , but not for any of the C5Hi 12 +. isomers. Generation of four- or five-membered silicon containing rings is suggested for H2 loss from the C4H12Si+. silanes.  相似文献   

19.
Cross sections for the production of O 2 ? in charge transfer collisions of fast molecular hydrogen ions (H 2 + , D 2 + , H 3 + , and D 3 + of 10 to 140 keV kinetic energy) with O2 molecules have been determined by means of a time-of-flight mass spectrometer analysing the slow negative product ions from the collisions. Within the measuring accuracy equivelocity H 2 + and D 2 + ions have the same cross sections for the generation of O 2 ? . The projectile velocity dependence curve of the cross section passes through a broad maximum with a peak value of about 6.5×10?18 cm2 around the Bohr velocity (25 keV/u) before showing an asymptotic decrease still within the limited energy range under investigation that is in inverse proportion to the square of velocity. Throughout the examined energy range H 3 + ions yield a cross section which is about 1.4 times larger than that of H 2 + ions of the same velocity. The fragment ion O? has been found to appear with cross sections between 10?19 and 10?18 cm2 upon collisional excitation in the energy range under investigation, with ever decreasing intensity when the energy of the positive hydrogen ions, the proton included, was increased.  相似文献   

20.
The vibrational structure of the first band of the photoelectron (PE) spectrum of HO 2 ? and DO 2 ? has been calculated on the basis of (slightly modified) ab initio potentials. The best agreement with the experimental spectrum of HO 2 ? is obtained for a vibrational temperature of ca. 600 K. “Peak D”, which has been under debate in earlier work, is composed of two transitions, with the “hot” transition 3 1 1 being more intense than the adiabatic transition. Since thev 2 bending mode of DO2 has significant OO stretching character, the vibrational structure of the PE spectrum of DO 2 ? is more complex than that of HO 2 ? . Large-scale RCCSD(T) calculations of the equilibrium electron affinity of HO2 yield 1.058 eV which agrees with the experimental value of 1.044 ± 0.020 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号