首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution to the sixth-order muon anomaly from second-order electron vacuum polarization is determined analytically to orderm e/m μ. The result, including the contributions from graphs containing proper and improper fourth-order electron vacuum polarization subgraphs, is $$\begin{gathered} \left( {\frac{\alpha }{\pi }} \right)^3 \left\{ {\frac{2}{9}\log ^2 } \right.\frac{{m_\mu }}{{m_e }} + \left[ {\frac{{31}}{{27}}} \right. + \frac{{\pi ^2 }}{9} - \frac{2}{3}\pi ^2 \log 2 \hfill \\ \left. { + \zeta \left( 3 \right)} \right]\log \frac{{m_\mu }}{{m_e }} + \left[ {\frac{{1075}}{{216}}} \right. - \frac{{25}}{{18}}\pi ^2 + \frac{{5\pi ^2 }}{3}\log 2 \hfill \\ \left. { - 3\zeta \left( 3 \right) + \frac{{11}}{{216}}\pi ^4 - \frac{2}{9}\pi ^2 \log ^2 2 - \frac{1}{9}log^4 2 - \frac{8}{3}a_4 } \right] \hfill \\ + \left[ {\frac{{3199}}{{1080}}\pi ^2 - \frac{{16}}{9}\pi ^2 \log 2 - \frac{{13}}{8}\pi ^3 } \right]\left. {\frac{{m_e }}{{m_\mu }}} \right\} \hfill \\ \end{gathered} $$ . To obtain the total sixth-order contribution toa μ?a e, one must add the light-by-light contribution to the above expression.  相似文献   

2.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

3.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

4.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

5.
The hyperfine structure and the Stark effect shift of the 4d5s5p z 2 F 5/2 states in the Y I spectrum were investigated by level-crossing technique. Between the Zeeman effect region and the Paschen-Back region of hyperfine structure states some of the levels cross. The resonance radiation of these coherently excited levels show an interference effect of the scattering amplitudes in the crossing region. The level-crossing signals give information about hfs splitting and lifetime of the excited states under investigation. The magnetic hfs splitting factorsA of the 4d5s5p z 2 F 5/2, 7/2 states and their lifetimes were deduced. $$\begin{gathered} |A (z^2 F_{5/2} )| = (23.8 \pm 0.04) MHz \frac{{g_J }}{{0.854}} \hfill \\ |A (z^2 F_{7/2} )| = (84.08 \pm 0.01) MHz \frac{{g_J }}{{1.148}} \hfill \\ \tau (z^2 F_{5/2} ) = (46 \pm 3) 10^{ - 9} s \frac{{0.854}}{{g_J }} \hfill \\ \tau (z^2 F_{7/2} ) = (44 \pm 4) 10^{ - 9} s \frac{{1.148}}{{g_J }}. \hfill \\ \end{gathered} $$ With an electric field parallel to the magnetic field a shift of the level-crossing signals of the 4d5s5p z 2 F 5/2, 7/2 states was observed, and the Stark constants β were deduced. $$\begin{gathered} |\beta (z^2 F_{5/2} )| = (0.0020 \pm 0.0002) MHz/(kV/cm)^2 \hfill \\ |\beta (z^2 F_{7/2} )| = (0.0025 \pm 0.0015) MHz/(kV/cm)^2 . \hfill \\ \end{gathered} $$   相似文献   

6.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

7.
Moessbauer spectra with different sets of parameters were calculated. A fit with a superposition of Lorentzians to these theoretical spectra showed, that systematic errors must be expected if the hyperfine structure of the spectrum is only partly resolved. Correction factors for some simple cases are given. Experiments to test the calculations were performed with133Cs (81 keV transition),165Ho (94.7 keV transition) and178Hf (93 keV transition). In all cases fits using the transmission integral and superpositions of Lorentzians showed the expected trends. We get the following results: $$\begin{gathered} ^{133} Cs:\frac{{g_{ex} }}{{g_{gr} }} = 1.90\left( 4 \right) \hfill \\ ^{165} Ho:\tau \left( {94.7keVlevel} \right) = 32\left( 1 \right)ps \hfill \\ \frac{{g_{ex} }}{{g_{gr} }} = 0.77\left( 3 \right) \hfill \\ ^{178} Hf:|H_{eff} \left( {4K,in iron} \right)| = 633\left( {40} \right)KG \hfill \\ |H_{eff} \left( {77K,in iron} \right)| = 630\left( {41} \right)KG. \hfill \\ \end{gathered}$$   相似文献   

8.
We have measured the branching ratios for \(\bar pp\) annihilation at rest intoπ + π ? η andπ + π ? η′ in hydrogen gas in two data samples that have different fractions ofS-wave andP-wave initial states. The branching ratios are derived from a comparison with the topological branching ratio for \(\bar pp\) annihilations into four charged pions of (49±4)% and the branching ratio intoπ + π ? π + π ? π 0 of (18.7±1.6)%. We find a significant reduction of the branching ratios fromP-states for \(\bar pp \to \pi ^ + \pi ^ - \eta \) andπ + π ? η′ in comparison toS-state annihilation. $$\begin{gathered} BR(S - wave \to \pi ^ + \pi ^ - \eta ) = (13.7 \pm 1.46) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to \pi ^ + \pi ^ - \eta ) = (3.35 \pm 0.84) \cdot 10^{ - 3} \hfill \\ BR(S - wave \to \pi ^ + \pi ^ - \eta ') = (3.46 \pm 0.67) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to \pi ^ + \pi ^ - \eta ') = (0.61 \pm 0.33) \cdot 10^{ - 3} . \hfill \\ \end{gathered} $$ In a partial wave analysis of theπ + π ? η Dalitz plot we find the following contributions: Phase space, \(a_2^ + (1320)\pi ^ \mp \) ,ηρ0 andf 2(1270)η: $$\begin{gathered} BR(S - wave \to \pi ^ + \pi ^ - \eta PS) = (6.31 \pm 1.22) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to \pi ^ + \pi ^ - \eta PS) = (0.47 \pm 0.26) \cdot 10^{ - 3} \hfill \\ BR(^1 S_0 \to a_2^ \pm (1320)\pi ^ \mp ) = (2.59 \pm 0.73) \cdot 10^{ - 3} \hfill \\ BR(^3 S_1 \to a_2^ \pm (1320)\pi ^ \mp ) = (1.31 \pm 0.48) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to a_2^ \pm (1320)\pi ^ \mp ) = (1.31 \pm 0.69) \cdot 10^{ - 3} \hfill \\ BR(^3 S_1 \to \rho \eta ) = (3.29 \pm 0.90) \cdot 10^{ - 3} \hfill \\ BR(^1 P_1 \to \rho \eta ) = (0.94 \pm 0.53) \cdot 10^{ - 3} \hfill \\ BR(^1 S_0 \to f_2 (1270)\eta ) = (0.083 \pm 0.086) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to f_2 (1270)\eta ) = (0.64 \pm 0.26) \cdot 10^{ - 3} . \hfill \\ \end{gathered} $$ We find a 2 σ effect for the reaction \(\bar pp \to a_0^ \pm (980)\pi ^ \mp \) , \(a_0^ \pm \to \eta \pi ^ \pm \) , with a branching ratio of (0.13±0.07)·10?3. For η' production we give a branching ratio of \(\bar pp \to \rho \eta '\) of (1.81±0.44)·10?3 from3 S 1. We estmate a contribution of about 0.3·10?3 for ρη' fromP-states. The ratio of ρη and ρη' rpoduction is used to test the validity of the quark line rule. In theπ + π ? π + π ? γ final state we do not observe the reaction \(\bar pp \to \pi ^ + \pi ^ - \omega \) , ω→π + π ? λ and derive an upper limit of 3·10?3 for decay modeωπ + π ? λ.  相似文献   

9.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

10.
The process p $ \bar{{p}}$ $ \rightarrow$ $ \Lambda_{c}^{+}$ $ \bar{{\Lambda}}_{c}^{-}$ is investigated within the handbag approach. It is shown to lowest order of perturbative QCD that, under the assumption of restricted parton virtualities and transverse momenta, the dominant dynamical mechanism, characterized by the partonic subprocess u $ \bar{{u}}$ $ \rightarrow$ c $ \bar{{c}}$ , factorizes in the sense that only the subprocess contains highly virtual partons, namely a gluon, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling the latter functions by overlaps of light-cone wave functions for the involved baryons we are able to predict cross-sections and spin correlation parameters for the process of interest.  相似文献   

11.
205,207Po have keen implanted with an isotope separator on-line into cold host matrices of Fe, Ni, Zn and Be. Nuclear magnetic resonance of oriented207Po has been observed in Fe and Ni, of205Po in Fe. The resonance frequencies for zero external field are $$\begin{gathered} v_L (^{207} Po\underline {Fe} ) = 575.08(20)MHz \hfill \\ v_L (^{207} Po\underline {Ni} ) = 160.1(8)MHz \hfill \\ v_L (^{205} Po\underline {Fe} ) = 551.7(8)MHz. \hfill \\ \end{gathered} $$ From the dependence of the resonance frequency on external magnetic field theg-factor of207Po was derived as $$g(^{207} Po) = + 0.31(22).$$ Using this value the magnetic hyperfine fields of Po in Fe and Ni were obtained as $$\begin{gathered} B_{hf} (Po\underline {Fe} ) = + 238(16)T \hfill \\ B_{hf} (Po\underline {Ni} ) = 66.3(4.6)T. \hfill \\ \end{gathered}$$ Theg-factor of205Po follows as $$g(^{205} Po) = + 0.304(22).$$ From the temperature dependence of the anisotropies ofγ-lines in the decay of205,207Po the multipole mixing of several transitions was derived. The electric interaction frequenciesv Q=eQVzz/h in the hosts Zn and Be were measured as $$\begin{gathered} v_Q (^{207} Po\underline {Zn} ) = + 42(3)MHz \hfill \\ v_Q (^{207} Po\underline {Be} ) = - 70(20)MHz \hfill \\ v_Q (^{205} Po\underline {Be} ) = - 42(17)MHz. \hfill \\ \end{gathered}$$   相似文献   

12.
The perturbation method of Lindstedt is applied to study the non linear effect of a nonlinear equation $$\nabla ^2 {\rm E} - \frac{1}{{c^2 }}\frac{{\partial ^2 {\rm E}}}{{\partial t^2 }} - \frac{{\omega _0^2 }}{{c^2 }}{\rm E} + \frac{{2v}}{{c^2 }}\frac{{\partial {\rm E}}}{{\partial t}} + E^2 \left[ {\frac{{\partial {\rm E}}}{{\partial t}} \times A} \right] = 0,$$ where (A. E)=0 andA,c, ω 0 andν are constants in space and time. Amplitude dependent frequency shifts and the solution up to third order are derived.  相似文献   

13.
Results of the search for rare radiative decay modes of the ?-meson performed with the Neutral Detector at the VEPP-2M collider are presented. For the first time upper limits for the branching ratios of the following decay modes have been placed at 90% confidence level: $$\begin{gathered} B(\phi \to \eta '\gamma )< 4 \cdot 10^{ - 4} , \hfill \\ B(\phi \to \pi ^0 \pi ^0 \gamma )< 10^{ - 3} , \hfill \\ B(\phi \to f_0 (975)\gamma )< 2 \cdot 10^{ - 3} , \hfill \\ B(\phi \to H\gamma )< 3 \cdot 10^{ - 4} , \hfill \\ \end{gathered} $$ whereH is a scalar (Higgs) boson with a mass 600 MeV<m H <1000 MeV, the real measurement isB(φH γB(H→2π0)<0.8·10-4, the quoted result is model dependent, as explained in the text, $$\begin{gathered} B(\phi \to a\gamma ) \cdot B(a \to e^ + e^ - )< 5 \cdot 10^{ - 5} , \hfill \\ B(\phi \to a\gamma ) \cdot B(a \to \gamma \gamma )< 2 \cdot 10^{ - 3} , \hfill \\ \end{gathered} $$ wherea is a particle with a low mass and a short lifetime, $$B(\phi \to a\gamma )< 0.7 \cdot 10^{ - 5} ,$$ wherea is a particle with a low mass not observed in the detector.  相似文献   

14.
The mechanisms of pre-equilibrium nuclear reactions are investigated within the Statistical Multistep Direct Process (SMDP) + Statistical Multistep Compound Process (SMCP) formalism. It has been shown that from an analysis of linear part in such dependences as $$\ln \left[ {{{\frac{{d^2 \sigma }}{{d\varepsilon _b d\Omega _b }}} \mathord{\left/ {\vphantom {{\frac{{d^2 \sigma }}{{d\varepsilon _b d\Omega _b }}} {\varepsilon _b^{1/2} }}} \right. \kern-\nulldelimiterspace} {\varepsilon _b^{1/2} }}} \right]upon\varepsilon _b $$ and $$\ln \left[ {{{\frac{{d\sigma ^{SMDP \to SMCP} }}{{d\varepsilon _b }}} \mathord{\left/ {\vphantom {{\frac{{d\sigma ^{SMDP \to SMCP} }}{{d\varepsilon _b }}} {\frac{{d\sigma ^{SMDP} }}{{d\varepsilon _b }}}}} \right. \kern-\nulldelimiterspace} {\frac{{d\sigma ^{SMDP} }}{{d\varepsilon _b }}}}} \right]upon{{U_B } \mathord{\left/ {\vphantom {{U_B } {\left( {E_a - B_b } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {E_a - B_b } \right)}}$$ one can extract information about the type of mechanism (SMDP, SMCP, SMDP→SMCP) and the number of stages of the multistep emission of secondary particles. In the above approach, we have discussed the experimental data for a broad class of reactions in various entrance and exit channels.  相似文献   

15.
By applying the Feynman-Hellmann theorem to \(q\bar q\) systems we find the following bounds on quark mass differences from the spectrum ofall quarkonium states $$\begin{gathered} 0.27 \leqq m_s - m_u \leqq 0.45GeV \hfill \\ 1.23 \leqq m_c - m_s \leqq 1.46GeV \hfill \\ 3.30 \leqq m_b - m_c \leqq 3.55GeV. \hfill \\ \end{gathered}$$ As best values we derive $$\begin{gathered} m_u = m_d = 0.31GeV,m_s = 0.62GeV, \hfill \\ m_c = 1.91GeV,m_b = 5.27GeV. \hfill \\ \end{gathered}$$   相似文献   

16.
The results of the measurements of radiative decays of ρ and ω mesons with the Neutral Detector at thee + e ? collider VEPP-2M are presented. The branching ratio of the decay ω→π 0γ was measured with higher than in previous experiments accuracy: $${\rm B}(\omega \to \pi ^0 \gamma ) = 0.0888 \pm 0.0062$$ . The ρ0π 0 γ branching ratio was measured for the first time: $$B(\rho ^0 \to \pi ^0 \gamma ) = (7.9 \pm 2.0) \cdot 10^{ - 4} $$ . The decays ρ, ω→ηγ were studied. Their branching ratios with the assumption of constructive ρ?ω interference are: $$\begin{gathered} B(\omega \to \eta \gamma ) = (7.3 \pm 2.9) \cdot 10^{ - 4} , \hfill \\ B(\rho \to \eta \gamma ) = (4.0 \pm 1.1) \cdot 10^{ - 4} \hfill \\ \end{gathered} $$ . The branching ratios of ρ, ω→ηγ and ω→e + e ? decays were also measured: $$\begin{gathered} B(\omega \to \pi ^ + \pi ^ - \pi ^0 ) = 0.8942 \pm 0.0062, \hfill \\ B(\omega \to e^ + e^ - ) = (7.14 \pm 0.36) \cdot 10^{ - 5} \hfill \\ \end{gathered} $$ . The upper limit for the ω→π 0 π 0 γ branching ratio was placed: B(ωπ 0 π 0 γ)<4·10?4 at 90% confidence level.  相似文献   

17.
Results are presented for the inclusive reactions $$\begin{gathered} \pi ^ - p \to \Lambda + X \hfill \\ \pi ^ - p \to K^0 + X \hfill \\ \pi ^ - p \to \Sigma (1385) + X \hfill \\ \pi ^ - p \to K(890) + X \hfill \\ \end{gathered} $$ at 3.95 GeV/c incident momentum, using data from a high statistics bubble chamber experiment. The total and differential inclusive cross sections are presented and compared with previous measurements. The forward backward asymmetries in Λ and Σ(1385) production are studied in the context of triple Regge theory. A phenomenological analysis of inclusive Λ production including the Λ polarization is presented.  相似文献   

18.
19.
Feynman diagrammatic technique was used for the calculation of Hartree-Fock and correlation energies, relativistic corrections, dipole matrix element. The whole energy of atomic system was defined as a polen-electron Green function. Breit operator was used for the calculation of relativistic corrections. The Feynman diagrammatic technique was developed for 〈HB>. Analytical expressions for the contributions from diagrams were received. The calculations were carried out for the terms of such configurations as 1s2 2sn1 2pn2 (2 ≧n1≧ 0, 6≧ n2 ≧ 0). Numerical results are presented for the energies of the terms in the form $$E = E_0 Z^2 + \Delta {\rm E}_2 + \frac{1}{Z}\Delta {\rm E}_3 + \frac{{\alpha ^2 }}{4}(E_0^r + \Delta {\rm E}_1^r Z^3 )$$ and for fine structure of the terms in the form $$\begin{gathered} \left\langle {1s^2 2s^{n_1 } 2p^{n_2 } LSJ|H_B |1s^2 2s^{n_1 \prime } 2p^{n_2 \prime } L\prime S\prime J} \right\rangle = \hfill \\ = ( - 1)^{\alpha + S\prime + J} \left\{ {\begin{array}{*{20}c} {L S J} \\ {S\prime L\prime 1} \\ \end{array} } \right\}\frac{{\alpha ^2 }}{4}(Z - A)^3 [E^{(0)} (Z - B) + \varepsilon _{co} ] + \hfill \\ + ( - 1)^{L + S\prime + J} \left\{ {\begin{array}{*{20}c} {L S J} \\ {S\prime L\prime 2} \\ \end{array} } \right\}\frac{{\alpha ^2 }}{4}(Z - A)^3 \varepsilon _{cc} . \hfill \\ \end{gathered} $$ Dipole matrix elements are necessary for calculations of oscillator strengths and transition probabilities. For dipole matrix elements two members of expansion by 1/Z have been obtained. Numerical results were presented in the form P(a,a′) = a/Z(1+τ/Z).  相似文献   

20.
We estimate $BR(K \to \pi \nu \bar \nu )$ in the context of the Standard Model by fitting for λ tV tdV ts * of the “kaon unitarity triangle” relation. To find the vertex of this triangle, we fit data from |? K|, the CP-violating parameter describing K mixing, and a ψ,K , the CP-violating asymmetry in B d 0 J/ψK 0 decays, and obtain the values $\left. {BR(K \to \pi \nu \bar \nu )} \right|_{SM} = (7.07 \pm 1.03) \times 10^{ - 11} $ and $\left. {BR(K_L^0 \to \pi ^0 \nu \bar \nu )} \right|_{SM} = (2.60 \pm 0.52) \times 10^{ - 11} $ . Our estimate is independent of the CKM matrix element V cb and of the ratio of B-mixing frequencies ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ . We also use the constraint estimation of λ t with additional data from $\Delta m_{B_d } $ and |V ub|. This combined analysis slightly increases the precision of the rate estimation of $K^ + \to \pi ^ + \nu \bar \nu $ and $K_L^0 \to \pi ^0 \nu \bar \nu $ (by ?10 and ?20%, respectively). The measured value of $BR(K^ + \to \pi ^ + \nu \bar \nu )$ can be compared both to this estimate and to predictions made from ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号