首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the quasi-periodic Schrödinger equation $$-\psi''(x) + V(x) \psi(x) = E \psi(x), \quad x \in{ \mathbf {R}} $$ in the regime of “small” V. Let $(E_{m}',E''_{m})$ , mZ ν , be the standard labeled gaps in the spectrum. Our main result says that if $E''_{m} - E'_{m} \le\varepsilon\exp(-\kappa_{0} |m|)$ for all mZ ν , with ε being small enough, depending on κ 0>0 and the frequency vector involved, then the Fourier coefficients of V obey $|c(m)| \le \varepsilon^{1/2} \exp(-\frac{\kappa_{0}}{2} |m|)$ for all mZ ν . On the other hand we prove that if |c(m)|≤εexp(?κ 0|m|) with ε being small enough, depending on κ 0>0 and the frequency vector involved, then $E''_{m} - E'_{m} \le2 \varepsilon\exp(-\frac {\kappa_{0}}{2} |m|)$ .  相似文献   

2.
We prove that, for each simple graph G whose set of vertices is countably infinite, there is a family ${\varvec{\mathcal{R}}(\varvec{G})}$ of the cardinality of the continuum of graphs such that (1) each graph ${\varvec{H} \in \varvec{\mathcal{R}}(\varvec{G})}$ is isomorphic to G, all vertices of H are points of the Euclidean space E 3, all edges of H are straight line segments (the ends of each edge are the vertices joined by it), the intersection of any two edges of H is either their common vertex or empty, and any isolated vertex of H does not belong to any edge of H; (2) all sets ${\varvec{\mathcal{B}}(\varvec{H})}$ ( ${\varvec{H} \in \varvec{\mathcal{R}}(\varvec{G})}$ ), where ${\varvec{\mathcal{B}}(\varvec{H})\subset \mathbf{E}^3}$ is the union of all vertices and all edges of H, are pairwise not homeomorphic; moreover, for any graphs ${\varvec{H}_1 \in \varvec{\mathcal{R}}(\varvec{G})}$ and ${\varvec{H}_2 \in \varvec{\mathcal{R}}(\varvec{G})}$ , ${\varvec{H}_1 \ne \varvec{H}_2}$ , and for any finite subsets ${\varvec{S}_i \subset \varvec{\mathcal{B}}(\varvec{H}_i)}$ (i = 1, 2), the sets ${\varvec{\mathcal{B}}(\varvec{H}_1){\setminus} \varvec{S}_1}$ and ${\varvec{\mathcal{B}}(\varvec{H}_2){\setminus} \varvec{S}_2}$ are not homeomorphic.  相似文献   

3.
пУсть жАДАНы Ужлы $$ - \infty< x_1< x_2< ...< x_k< x_{k + 1}< ...< x_n< + \infty ,$$ , И пУстьx 1 * <x 2 * <...<x n-1 * — кОРНИ МНОгО ЧлЕНА Ω′(х). гДЕ $$\omega (x) = \prod\limits_{k = 1}^n {(x - x_k ).} $$ В РАБОтЕ ИсслЕДУЕтсь жАДАЧА: кАк ОпРЕДЕлИт ь МНОгОЧлЕНР(х) МИНИМАльНОИ стЕп ЕНИ, Дль кОтОРОгО ВыпОлНь Утсь слЕДУУЩИЕ ИНтЕР пОльцИОННыЕ УслОВИь гДЕ {y k И {y k′}-жАДАННы Е сИстЕМы жНАЧЕНИИ.  相似文献   

4.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

5.
In the theory of coalgebras C over a ring R, the rational functor relates the category $_{C^*}{\mathbb{M}}$ of modules over the algebra C * (with convolution product) with the category $^C{\mathbb{M}}$ of comodules over C. This is based on the pairing of the algebra C * with the coalgebra C provided by the evaluation map ${\rm ev}:C^*\otimes_R C\to R$ . The (rationality) condition under consideration ensures that $^C{\mathbb{M}}$ becomes a coreflective full subcategory of $_{C^*}{\mathbb{M}}$ . We generalise this situation by defining a pairing between endofunctors T and G on any category ${\mathbb{A}}$ as a map, natural in $a,b\in {\mathbb{A}}$ , $$ \beta_{a,b}:{\mathbb{A}}(a, G(b)) \to {\mathbb{A}}(T(a),b), $$ and we call it rational if these all are injective. In case T?=?(T, m T , e T ) is a monad and G?=?(G, δ G , ε G ) is a comonad on ${\mathbb{A}}$ , additional compatibility conditions are imposed on a pairing between T and G. If such a pairing is given and is rational, and T has a right adjoint monad T ???, we construct a rational functor as the functor-part of an idempotent comonad on the T-modules ${\mathbb{A}}_{T}$ which generalises the crucial properties of the rational functor for coalgebras. As a special case we consider pairings on monoidal categories.  相似文献   

6.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

7.
Letf(X; T 1, ...,T n) be an irreducible polynomial overQ. LetB be the set ofb teZ n such thatf(X;b) is of lesser degree or reducible overQ. Let ?={F j}{F j } j?1 be a Følner sequence inZ n — that is, a sequence of finite nonempty subsetsF j ?Z n such that for eachvteZ n , $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap (F_j + \upsilon )} \right|}}{{\left| {F_j } \right|}} = 1$ Suppose ? satisfies the extra condition that forW a properQ-subvariety ofP n ?A n and ?>0, there is a neighborhoodU ofW(R) in the real topology such that $\mathop {lim sup}\limits_{j \to \infty } \frac{{\left| {F_j \cap U} \right|}}{{\left| {F_j } \right|}}< \varepsilon $ whereZ n is identified withA n (Z). We prove $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap B} \right|}}{{\left| {F_j } \right|}} = 0$ .  相似文献   

8.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

9.
Let ${\mathbf{K} \subset \mathbb{R}^n}$ be a compact basic semi-algebraic set. We provide a necessary and sufficient condition (with no à priori bounding parameter) for a real sequence y = (y α), ${\alpha \in \mathbb{N}^n}$ , to have a finite representing Borel measure absolutely continuous w.r.t. the Lebesgue measure on K, and with a density in ${\cap_{p \geq 1} L_p(\mathbf{K})}$ . With an additional condition involving a bounding parameter, the condition is necessary and sufficient for the existence of a density in L (K). Moreover, nonexistence of such a density can be detected by solving finitely many of a hierarchy of semidefinite programs. In particular, if the semidefinite program at step d of the hierarchy has no solution, then the sequence cannot have a representing measure on K with a density in L p (K) for any p ≥ 2d.  相似文献   

10.
This paper proposes an interior point algorithm for a positive semi-definite linear complementarity problem: find an (x, y)∈? 2n such thaty=Mx+q, (x,y)?0 andx T y=0. The algorithm reduces the potential function $$f(x,y) = (n + \sqrt n )\log x^T y - \sum\limits_{i = 1}^n {\log x_i y_i } $$ by at least 0.2 in each iteration requiring O(n 3) arithmetic operations. If it starts from an interior feasible solution with the potential function value bounded by \(O(\sqrt n L)\) , it generates, in at most \(O(\sqrt n L)\) iterations, an approximate solution with the potential function value \( - O(\sqrt n L)\) , from which we can compute an exact solution in O(n 3) arithmetic operations. The algorithm is closely related with the central path following algorithm recently given by the authors. We also suggest a unified model for both potential reduction and path following algorithms for positive semi-definite linear complementarity problems.  相似文献   

11.
Let Y n denote the Gromov-Hausdorff limit $M^{n}_{i}\stackrel{d_{\mathrm{GH}}}{\longrightarrow} Y^{n}$ of v-noncollapsed Riemannian manifolds with ${\mathrm{Ric}}_{M^{n}_{i}}\geq-(n-1)$ . The singular set $\mathcal {S}\subset Y$ has a stratification $\mathcal {S}^{0}\subset \mathcal {S}^{1}\subset\cdots\subset \mathcal {S}$ , where $y\in \mathcal {S}^{k}$ if no tangent cone at y splits off a factor ? k+1 isometrically. Here, we define for all η>0, 0<r≤1, the k-th effective singular stratum $\mathcal {S}^{k}_{\eta,r}$ satisfying $\bigcup_{\eta}\bigcap_{r} \,\mathcal {S}^{k}_{\eta,r}= \mathcal {S}^{k}$ . Sharpening the known Hausdorff dimension bound $\dim\, \mathcal {S}^{k}\leq k$ , we prove that for all y, the volume of the r-tubular neighborhood of $\mathcal {S}^{k}_{\eta,r}$ satisfies ${\mathrm {Vol}}(T_{r}(\mathcal {S}^{k}_{\eta,r})\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},\eta)r^{n-k-\eta}$ . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let $\mathcal {B}_{r}$ denote the set of points at which the C 2-harmonic radius is ≤r. If also the $M^{n}_{i}$ are Kähler-Einstein with L 2 curvature bound, $\| Rm\|_{L_{2}}\leq C$ , then ${\mathrm {Vol}}( \mathcal {B}_{r}\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},C)r^{4}$ for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the $M^{n}_{i}$ , we obtain a slightly weaker volume bound on $\mathcal {B}_{r}$ which yields an a priori L p curvature bound for all p<2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.  相似文献   

12.
Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume dimV ≥ 4 and ¦ $\mathbb{F}$ ¦ ≥ 4. We consider a permutation ? of the central affine quadric $\mathcal{F}$ := {x εV ¦q(x) = 1} such that $$(*)x \cdot y = \mu \Leftrightarrow x^\varphi \cdot y^\varphi = \mu \forall x,y\varepsilon \mathcal{F}$$ holds true, where μ is a fixed element of $\mathbb{F}$ and where “·” is the scalar product associated withq. We prove that ? is induced (in a certain sense) by a semi-linear bijection (σ,?): (V, $\mathbb{F}$ ) → (V, $\mathbb{F}$ ) such thatq o ?o q, provided $\mathcal{F}$ contains lines and the pair (μ, $\mathbb{F}$ ) has additional properties if there ar no planes in $\mathcal{F}$ . The cases μ, 0 and μ = 0 require different techniques.  相似文献   

13.
For each n let ${Y^{(n)}_t}$ be a continuous time symmetric Markov chain with state space ${n^{-1} \mathbb{Z}^d}$ . Conditions in terms of the conductances are given for the convergence of the ${Y^{(n)}_t}$ to a symmetric Markov process Y t on ${\mathbb{R}^d}$ . We have weak convergence of $\{{Y^{(n)}_t: t \leq t_0\}}$ for every t 0 and every starting point. The limit process Y has a continuous part and may also have jumps.  相似文献   

14.
This paper is concerned with the Cauchy problem for the Keller–Segel system $$\left\{\begin{array}{l@{\quad}l}u_t = \nabla \cdot (\nabla u - u \nabla v) & \hbox{in } {\bf R}^{2} \times(0,\infty),\\v_t = \Delta v - \lambda v + u & \hbox{ in } {\bf R}^2 \times(0,\infty),\\u(x,0) = u_0 (x) \geq 0, \; v(x,0) = v_0 (x) \geq 0 & \hbox{ in} {\bf R}^2\end{array}\right.$$ with a constant λ ≥ 0, where ${(u_0, v_0) \in (L^1 ({\bf R}^2) \cap L^\infty ({\bf R}^2) ) \times (L^1 ({\bf R}^2) \cap H^1 ({\bf R}^2))}$ . Let $$m (u_0;{\bf R}^2) = \int\limits_{{\bf R}^2} u_0 (x) dx$$ . The same method as in [9] yields the existence of a blowup solution with m (u 0; R 2) > 8π. On the other hand, it was recently shown in [7] that under additional hypotheses ${u_0 \log (1 + |x|^2) \in L^1 ({\bf R}^2)}$ and ${u_0 \log u_0 \in L^1 ({\bf R}^2)}$ , any solution with m(u 0; R 2) < 8π exists globally in time. In[18], the extra assumptions were taken off, but the condition on mass was restricted to m (u 0; R 2) < 4π. In this paper, we prove that any solution with m (u 0; R 2) < 8π exists globally in time under no extra conditions. Furthermore the global existence of solutions is obtained under some condition on u 0 also in the critical case m (u 0; R 2) = 8π.  相似文献   

15.
In this paper, we study reproducing kernel Hilbert spaces of arbitrary smoothness on the sphere $\mathbb{S}^{d} \subset\mathbb{R}^{d+1}$ . The reproducing kernel is given by an integral representation using the truncated power function $(\mathbf{x} \cdot\mathbf{z} - t)_{+}^{\beta-1}$ supported on spherical caps centered at z of height t, which reduces to an integral over indicator functions of open spherical caps if β=1, as studied in Brauchart and Dick (Proc. Am. Math. Soc. 141(6):2085–2096, 2013). This is analogous to a generalization of the reproducing kernel to arbitrary smoothness on the unit cube by Temlyakov (J. Complex. 19(3):352–391, 2003). We show that the reproducing kernel is a sum of the Euclidean distance ∥x?y∥ of the arguments of the kernel raised to the power of 2β?1 and an adjustment in the form of a Kampé de Fériet function that ensures positivity of the kernel if 2β?1 is not an even integer; otherwise, a limit process introduces logarithmic terms in the distance. For $\beta\in\mathbb{N}$ , the Kampé de Fériet function reduces to a polynomial, giving a simple closed form expression for the reproducing kernel. Stolarsky’s invariance principle states that the sum of all mutual distances among N points plus a certain multiple of the spherical cap $\mathbb{L}_{2}$ -discrepancy of these points remains constant regardless of the choice of the points. Rearranged differently, it provides a reinterpretation of the spherical cap $\mathbb{L}_{2}$ -discrepancy as the worst-case error of equal-weight numerical integration rules in the Sobolev space over $\mathbb{S}^{d}$ of smoothness (d+1)/2 provided with the reproducing kernel 1?C d x?y∥ for some constant C d . Using the new function spaces, we establish an invariance principle for a generalized discrepancy extending the spherical cap $\mathbb{L}_{2}$ -discrepancy and give a reinterpretation as the worst-case error in the Sobolev space over $\mathbb{S}^{d}$ of arbitrary smoothness s=β?1/2+d/2. Previously, Warnock’s formula, which is the analog to Stolarsky’s invariance principle for the unit cube [0,1] s , has been generalized using similar techniques in Dick (Ann. Mat. Pura Appl. (4) 187(3):385–403, 2008).  相似文献   

16.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

17.
18.
Assume that L p,q , $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \{ (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \} $ . We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ , provided 1/p ≠ 1/p 1 + … + 1/p n . In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.  相似文献   

19.
Let T be a bijective map on ? n such that both T and T ???1 are Borel measurable. For any θ?∈?? n and any real n ×n positive definite matrix Σ, let N (θ, Σ) denote the n-variate normal (Gaussian) probability measure on ? n with mean vector θ and covariance matrix Σ. Here we prove the following two results: (1) Suppose $N(\boldsymbol{\theta}_j, I)T^{-1}$ is gaussian for 0?≤?j?≤?n, where I is the identity matrix and {θ j ???θ 0, 1?≤?j?≤?n } is a basis for ? n . Then T is an affine linear transformation; (2) Let $\Sigma_j = I + \varepsilon_j \mathbf{u}_j \mathbf{u}_j^{\prime},$ 1?≤?j?≤?n where ε j ?>???1 for every j and {u j , 1?≤?j?≤?n } is a basis of unit vectors in ? n with $\mathbf{u}_j^{\prime}$ denoting the transpose of the column vector u j . Suppose N(0, I)T ???1 and $N (\mathbf{0}, \Sigma_j)T^{-1},$ 1?≤?j?≤?n are gaussian. Then $T(\mathbf{x}) = \sum\nolimits_{\mathbf{s}} 1_{E_{\mathbf{s}}}(\mathbf{x}) V \mathbf{s} U \mathbf{x}$ a.e. x, where s runs over the set of 2 n diagonal matrices of order n with diagonal entries ±1, U, V are n ×n orthogonal matrices and { E s } is a collection of 2 n Borel subsets of ? n such that { E s } and {V s U (E s )} are partitions of ? n modulo Lebesgue-null sets and for every j, $V \mathbf{s} U \Sigma_j (V \mathbf{s} U)^{-1}$ is independent of all s for which the Lebesgue measure of E s is positive. The converse of this result also holds. Our results constitute a sharpening of the results of Nabeya and Kariya (J. Multivariate Anal. 20 (1986) 251–264) and part of Khatri (Sankhyā Ser. A 49 (1987) 395–404).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号