首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Necessary and sufficient conditions are found in order for the system of successive primitives $$\left\{ {F_n (z) = \sum\nolimits_{k = 0}^\infty {\frac{{a_{k - n} }}{{k!}}z^k } } \right\}, n = 0,1,2, ...,$$ generated by the integer-valued function \(F_n (z) = \sum\nolimits_{k = 0}^\infty {\frac{{a_k }}{{k!}}zk} \) of growth no higher than first order of the normal typeσ(F0(z) ε [1;σ] to form a quasi-power basis in the class [1; σ].  相似文献   

2.
I begin with a new short proof of: (I) LetP(t) inR d be a function oft havingn continuous derivatives foratx. ThenP(x)∈ convK, where $$K = \left\{ {\sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}} P^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}P^{(n)} (t),a \leqslant t \leqslant x} \right\}.$$ for applying (I) let bef(t) a real function such that the point ((t?a) n+1,f(t)) fulfills the conditions of (I). Then (I) gives a sharper estimate of then th remainder term off(x) than the Lagrange remainder formula. Iff( n )(t) is also convex inatx, thenf(x)∈[c,d], where $$\begin{gathered} c = \sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}f^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}f^{(n)} \left( {\frac{{na + x}}{{n + 1}}} \right)} , \hfill \\ d = \sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}f^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}} \frac{{nf^{(n)} (a) + f^{(n)} (x)}}{{n + 1}}. \hfill \\ \end{gathered} $$   相似文献   

3.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

4.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

5.
In this paper we investigate the boundedness character of the positive solutions of the rational difference equation of the form $$x_{n + 1} = \frac{{a_0 + \sum\nolimits_{j = 1}^k {a_j x_{n - j + 1} } }}{{b_0 + \sum\nolimits_{j = 1}^k {b_j x_{n - j + 1} } }}, n = 0,1,...$$ where k ε N, andaj,bj, j = 0,1,…, k, are nonnegative numbers such thatb 0+∑ j=1 k b j x n-j+1>0 for everynN ∪{0}. In passing we confirm several conjectures recently posed in the paper: E. Camouzis, G. Ladas and E. P. Quinn, On third order rational difference equations (part 6).  相似文献   

6.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

7.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

8.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

9.
Let x?=?[0; a 1 , a 2 , …] be the regular continued fraction expansion of an irrational number x ∈ [0, 1]. For the derivative of the Minkowski function ?(x) we prove that ?′(x)?=?+, provided that \( \mathop {{\lim \sup }}\limits_{t \to \infty } \frac{{{a_1} + \cdots + {a_t}}}{t} < {\kappa_1} = \frac{{2\log {\lambda_1}}}{{\log 2}} = {1.388^{+} } \), and ?′(x)?=?0, provided that \( \mathop {{\lim \inf }}\limits_{t \to \infty } \frac{{{a_1} + \cdots + {a_t}}}{t} > {\kappa_2} = \frac{{4{L_5} - 5{L_4}}}{{{L_5} - {L_4}}} = {4.401^{+} } \), where \( {L_j} = \log \left( {\frac{{j + \sqrt {{{j^2} + 4}} }}{2}} \right) - j \cdot \frac{{\log 2}}{2} \). Constants κ1, κ2 are the best possible. It is also shown that ?′(x)?=?+ for all x with partial quotients bounded by 4.  相似文献   

10.
For the class Cε={f∈C: En, n≤Z+} where \(\left\{ {\varepsilon _n } \right\}_{n \in Z_ + } \) is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée-Poussin sums: (1) $$c_1 \sum\nolimits_{j = n}^{2\left( {n + l} \right)} {\frac{{\varepsilon _j }}{{l + j - n + 1}}} \leqslant \mathop {\sup }\limits_{f \in C_\varepsilon } \left\| {f - V_{n, l} \left( f \right)} \right\|_C \leqslant c_2 \sum\nolimits_{j = n}^{2\left( {n + l} \right)} {\frac{{\varepsilon _j }}{{l + j - n + 1}}} \left( {n \in N} \right)$$ , where c1 and c2 are constants which do not depend on n orl. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes Cε of (differentiable) functions. The result (1) substantially refines the estimate (see [1]) (2) $$\left\| {V_{n, l} \left( f \right) - f} \right\|_C = O\left( {\log {n \mathord{\left/ {\vphantom {n {\left( {l + 1} \right) + 1}}} \right. \kern-\nulldelimiterspace} {\left( {l + 1} \right) + 1}}} \right) E_n \left[ f \right] \left( {n \to \infty } \right)$$ and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).  相似文献   

11.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

12.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

13.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

14.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

15.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

16.
On Kantorovich-Stieltjes operators   总被引:1,自引:0,他引:1  
Let ν be a finite Borel measure on[0,1]The Kantorovich-Stieltjes polynomials are de-fined byK_n ν=(n+1)N_(k,n)(nN),where N_(k,n)(x)=x~k(1-x)~(n-k)(x[0,1],k=1,2,…,n)are the basic Bernsteinpolynomials and I_(k,n):=[k/(n+1),(k+1)/(n+1)](k=0,1,…,n;nN).We prove that the maximaloperator of the sequence(K_n)is of weak type and the sequence of polynomials(K_n ν)con-verges a.e.on[0,1]to the Radon-Nikodym derivative of the absolutely continuous part of  相似文献   

17.
We study the class of (m constraint,n variable) set covering problems which have no more thank variables represented in each constraint. Letd denote the maximum column sum in the constraint matrix, letr=[m/d]?1, and letZ g denote the cost of a greedy heuristic solution. Then we prove $$\begin{gathered} Zg \leqslant 1 + r + m - d - \left[ {mk \cdot MAX\left\{ {\frac{{2r}}{{2n - r - 1}},\ln \frac{n}{{n - r}}} \right\}} \right. \hfill \\ \left. { - kd \cdot MIN\left\{ {\frac{{r(r + 1)}}{{2(n - r)}},n \cdot \ln \frac{{n - 1}}{{n - r - 1}} - 1} \right\}} \right]. \hfill \\ \end{gathered} $$ This provides the firsta priori nontrivial upper bound discovered on heuristic solution cost (and thus on optimal solution cost) for the set covering problem. An example demonstrates that this bound is attainable, both for a greedy heuristic solution and for the optimal solution. Numerical examples show that this bound is substantially better than existing bounds for many problem instances. An important subclass of these problems occurs when the constraint matrix is a circulant, in which casem=n andk=d=[αη] for some 0<α<1. For this subclass we prove $$\mathop {\lim }\limits_{n \to \infty } Zg/n \leqslant \frac{{\alpha ^2 }}{2}[1/\alpha ][1/\alpha ].$$   相似文献   

18.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

19.
Дль сИстЕМы РАжлИЧНы х тОЧЕкΤ=(t 1,...,t n ) Иж ОтРЕ жкА [?1,1] Иk?[0,1) ВВОДИтсь ВЕлИЧ ИНА $$L_n (\tau ,p,k) = \mathop {\max }\limits_{t \in [ - 1,1]} (\mathop \Sigma \limits_{j = 1}^n |D_j (t)|^p )^{1/p} ,$$ где $$D_j (t) = \frac{{\omega _j (t)}}{{\omega _j (t_j )}}[1 - kW_j^2 (t)],{\mathbf{ }}\omega _j (t) = \mathop \prod \limits_{\begin{array}{*{20}c} {m = 1} \\ {m \ne 1} \\ \end{array} }^n W_m (t),{\mathbf{ }}W_m (t) = \frac{{t - t_m }}{{1 - kt_m t}}.$$ пРИk=0 ОНА сОВпАДАЕт с кОНс тАНтОИ лЕБЕгА, сВьжАН НОИ с ИНтЕРпОльцИЕИ МНОгО ЧлЕНОМ лАгРАНжА. пОкАжАНА сВ ьжь ВЕлИЧИНыL n (Τ, p, k) с жАД АЧАМИ ИНтЕРпОльцИИ АНАлИт ИЧЕскИх ФУНкцИИ. Дль сИстЕМы $$Z = \left\{ {sn\left[ {\left( {\frac{{2j - 1}}{n} - 1} \right)K,k} \right]} \right\}_{j = 1}^n ,$$ ьВльУЩЕИсь АНАлОгОМ ЧЕБышЕВскОИ сИстЕМы, пОлУЧЕНы ОцЕНкИL n (Z, p, k) пРИp≧2 Иp≧1.  相似文献   

20.
We study, firstly, the dynamics of the difference equation $x_{n + 1} = \alpha + \frac{{x_n^p }}{{x_{n - 1}^p }}$ , withp ∈ (0,1) and α [0, ∞). Then, we generalize our results to the (k + 1)th order difference equation $x_{n + 1} = \alpha + \frac{{x_n^p }}{{x_{n - k}^p }}$ ,k = 2, 3,... with positive initial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号