首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral sodium ammonia clusters are formed in apickup source by injecting a beam of sodium atoms into the expansion zone of a pulsed nozzle beam of neat ammonia gas. The clusters are studied by one-photon ionisation in the range of 266 nm to 500 nm with pulsed lasers and Time-of-Flight mass spectroscopy. Na(NH3) n cluster ion signals up ton=35 are observed. The ionisation potentials of complexes up ton=9 are reported.  相似文献   

2.
A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay (µs range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH3 monomer from protonated clusters (NH3) n ? 2NH 4 + . Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up ton=10.  相似文献   

3.
The formation of protonated and unprotonated ammonia cluster ions is studied by femtosecond two colour two photon pump-probe techniques applied to (NH3) n and (ND3) n clusters withn up to 8. The fourth harmonic (~ 200 nm, 6.2 eV, 160 fs) of a Ti: Sapphire laser pulse is used to excite the clusters in a state corresponding to theà state of NH3 while the third harmonic (267 nm, 4.65 eV) is used for the subsequent ionisation step. Employing a combination of the optical Bloch equations for the excitation process and rate equations for the cluster dynamics we calibrate the zero time delay and carefully analyse the time dependence of the pump-probe signal. Several distinct intermediate steps in the time evolution can be distinguished, having characteristic time constants ranging from 40 fs to over 100 ps. They are discussed in a consistent scheme for the excitation, ionisation and protonation dynamics, accounting also for characteristic differences observed between deuterated and undeuterated species. A particularly remarkable time dependence of the homogeneous (NH3) 2 + cluster ion signal is interpreted as a fingerprint of internally protonated neutral precursors of the type NH3NH2NH4.  相似文献   

4.
Neutral Na·(H2O) n clusters are studied by near-uv one-photon ionisation and time-of-flight mass spectroscopy. The clusters are formed in a “pickup source” by injection of a beam of Na atoms into the expansion zone of a pulsed nozzle beam of water vapour seeded into an argon carrier gas. The performance of this novel technique for studying cold aggregates of potentially reactive species is discussed in detail. The photoion efficiency (PIE) spectrum of the monomer near its ionisation threshold (4.379(2) eV) shows a rich structure. Vibrational frequencies of the ion can be deduced and some indication of molecular Rydberg states is seen. Ionisation potentials for larger clusters and the binding energies of the neutral clusters up ton=5 are reported.  相似文献   

5.
The ultraviolet luminescence from the Hg-photosensitised reaction of ammonia was investigated at pressures up to 10 atmospheres. From a variation of the wavelength distribution on the [NH3], it was concluded that Hg(63P0) can attach clusters of NH3 molecules to form Hg(NH3)n* with n up to at least 5. The emission profiles of the stabilized complexes with n = 1–4 were determined, and also the profile from unstabilised HgNH3* formed in a bimolecular encounter of Hg(63P0) with NH3. Dissociation constants for complexes with n = 2, 3 and 4 were measured.  相似文献   

6.
The influence of formic acid on water cluster aggregation has been investigated experimentally by mass spectrometry and tunable UV laser ionization applied to Na-doped clusters formed in the supersonic expansion of water vapors seeded with formic acid (FA) as well as theoretically using high level quantum chemistry methods. The mass spectra of Na−FA(H2O)n clusters show an enlarging of mass distribution toward heavier clusters with respect to the Na−(H2O)n clusters, suggesting similar mass distribution in neutral clusters and an influence of formic acid in water aggregation. Density functional theory and coupled-cluster type (DLPNO-CCSD(T)) calculations have been used to calculate structures and energetics of neutral and ionized Na−FA(H2O)n as well as neutral FA(H2O)n. Na-doped clusters are characterized by very stable geometries. The theoretical adiabatic ionization potential values match pretty well the measured appearance energies and the calculated first six electronic excited states show Rydberg-type characters, indicating possible autoionization contributions in the mass spectra. Finally, theoretical calculations on neutral FA(H2O)n clusters show the possibility of similarly stable structures in small clusters containing up to n=4–5 water molecules, where FA interacts significantly with waters. This suggests that FA can compete with water molecules in the starting stage of the aggregation process, by forming stable nucleation seed.  相似文献   

7.
The method of diatomics-in-molecules (DIM) is applied to the calculation of the energy of the homogeneous noble-gas ionic clusters Ar n + and Xe n + forn=3, 4, ..., 22. The trimers are stable symmetric linear molecules exhibiting chemical binding, a result in agreement both with ab initio calculations and with previous DIM work. The clusters up ton=13 are best described as a trimer ion surrounded by neutrals, whereby the charge distribution changes slightly with increasingn. Both noble gases exhibit a special stability associated with the completion of the first shell of neutral atoms atn=13. Asn increases from 13 to 22, there is a greater delocalization of the positive charge, the central ion tending to become a linear tetramer, symmetric for Xe and unsymmetric for Ar. Energies of the excited electronic states are reported and the possibility of developing simpler DIM models for the clusters and for mixed noble gases is discussed.  相似文献   

8.
(CO2) n , (NO) n and (NH3) n clusters are generated in a supersonic molecular beam and size selected by scattering from an He beam. By measurements of angular dependent mass spectra, TOF distributions and the angular dependence of the scattered signal quantitative information on the fragmentation probability by electron impact is derived. The van der Waals systems (CO2) n and (NO) n appear only at masses which are simply multiples of the monomer mass. The preferred cluster ion is the monomer ion for all investigated cluster sizes withn=2 to 4. The fragment pattern for the quasi-hydrogen bonded (NH3) n -cluster shows, beside a large number of fragment masses, a preference for protonated ions. The results are explained in terms of simple models based on the structural change from the neutral to the ionized configuration and the fragmentation pattern of the monomer followed by ionmolecule reactions.  相似文献   

9.
Structures of Na(H2O)n and Na+(H2O)n clusters with n = 1?6, 19, and 28 are determined in the second order of the Møller-Plesset perturbation theory with the use of extended atomic basis set 6–31++G**. It is found that when the number of molecules is sufficient for the formation of two solvation shells around sodium, a continuous hydrogen-bond network is formed in both neutral and charged clusters, and the orientation of each molecule is determined by the balance between interactions with the neighboring water molecules and with the field of the central particle. In the cations, this field is stronger, and up to the third solvation shell, molecules have a predominant orientation with respect to sodium. In the neutral clusters, with an increase in the number of water molecules, the maximum of the electron density distribution of the highest occupied molecular orbital becomes more distant from the sodium nucleus, being shifted toward the cluster surface. The energy of this orbital accordingly decreases in absolute value approaching 22 kcal/mol inmicroparticles. In the charged clusters, the distribution of the positive charge generally correlates with the character of the highest occupied orbital in the neutral systems, so that with an increase in the number of molecules, the atomic charge of sodium decreases and tends to zero as n → ∞. The ionization potential of sodium changes in inverse proportion to the linear size of the cluster, and should not exceed 1.1 eV in watermicroparticles.  相似文献   

10.
Ternary clusters (NH3)·(H2SO4)·(H2O)n have been widely studied. However, the structures and binding energies of relatively larger cluster (n > 6) remain unclear, which hinders the study of other interesting properties. Ternary clusters of (NH3)·(H2SO4)·(H2O)n, n = 0-14, were investigated using MD simulations and quantum chemical calculations. For n = 1, a proton was transferred from H2SO4 to NH3. For n = 10, both protons of H2SO4 were transferred to NH3 and H2O, respectively. The NH4+ and HSO4 formed a contact ion-pair [NH4+-HSO4] for n = 1-6 and a solvent separated ion-pair [NH4+-H2O-HSO4] for n = 7-9. Therefore, we observed two obvious transitions from neutral to single protonation (from H2SO4 to NH3) to double protonation (from H2SO4 to NH3 and H2O) with increasing n. In general, the structures with single protonation and solvated ion-pair were higher in entropy than those with double protonation and contact ion-pair of single protonation and were thus preferred at higher temperature. As a result, the inversion between single and double protonated clusters was postponed until n = 12 according to the average binding Gibbs free energy at the normal condition. These results can serve as a good start point for studies of the other properties of these clusters and as a model for the solvation of the [H2SO4-NH3] complex in bulk water.  相似文献   

11.
Photodissociation and photodetachment of negatively charged sulfur dioxide clusters (SO2) n ? ,n=2–11, were investigated in the wavelength range from 458 to 660 nm. Electrons obtained from the interaction of photons with clusters were found to be produced in two photon processes forn≥3. Hence their detachment threshold energy is increased by at least 0.7 eV with respect to the dimer. Wavelength dependent depletion spectra indicate that the clusters are composed of a dimer anion chromophore solvated by neutral molecules. The spectral position of the absorption band is maintained and the shape evolves continuously with cluster size. However, a narrowing of the band with increasing cluster size is observed.  相似文献   

12.
A supersonic beam is employed to produce benzene clusters (C6H6) n up ton=40. Mass analysis is achieved after two-photon ionization in a reflectron mass spectrometer. Photon energy is chosen so that the internal energy of the cluster ions is less than 700 meV and a slow decay on the µs time scale is observed. By an energy analysis with the reflecting field it is found that the elimination of one neutral benzene monomer is the favoured dissociation process of the cluster ions. Information about the dissociation pathways of the cluster ions is essential if one is to obtain neutral cluster abundances from the ion mass spectrum. Furthermore an experimental method is presented to obtain pure intermediate state (S 1←S0) spectra of selected clusters without interferences from the other clusters present in the molecular beam. This method is based on the observation of the metastable decay of the corresponding cluster ion. When the metastable signal is recorded as a function of photon energy it reflects theS 1S 0 intermediate state spectrum. Spectra are presented for the benzene dimer, trimer, tetramer and pentamer.  相似文献   

13.
The experimental polarizabilities, ionization potentials and electron affinities of aluminum clusters are compared with jellium predictions. It is found that the clusters have radii and work functions which are close to the jellium model predictions for clusters with more than 13 atoms. The polarizabilities of Al n correspond with the jellium only forn>40 and the shell structure features in the ionization potentials are anomalous up to 37. We conclude that nonjellium effects are important up ton=40.  相似文献   

14.
Monte-Carlo calculations have been performed for positively charged xenon-argon clusters in the temperature range between 10K and 40K for cluster sizes up ton=27. The argon-argon interaction potential stems from empirical data, the Xe+-Ar potential is determined by ab initio MRD-CI calculations and a semi-empirical treatment of spin-orbit effects. Special stability is found for cluster sizesn=10, 13, 19 and less pronounced forn=23 and 25 fairly independent of the temperature. The geometrical structure of the clusters are given and the construction principle is discussed in light of the interactions among neutral argon atoms and the xenon ion — argon interaction. Comparison with measured mass spectra for mixed rare-gas clusters and [Xen]+ clusters is made and shows a consistent picture for the building principle.  相似文献   

15.
Photoionization and -fragmentation of Na(NH3)n clusters by 170 fs and 8 ns laser pulses are studied with photon energies of 2.98 eV to 3.46 eV. In the reflectron timeof- flight mass spectra a strong metastable loss of NH3 is observed independent of the laser pulse length. From the fragmentation rate constants the internal energy of the cluster ions prior to the fragmentation process is determined by an RRK approach.  相似文献   

16.
Neutral clusters (NH3) n ((CH3)3N) m and (H2O) n ((CH3)3N) m , prepared in a pulsed nozzle supersonic expansion, are ionized by multiphoton ionization and investigated with a reflectron time-of-flight mass spectrometry technique. The observed mixed cluster ions display a maximum intensity atm=2(n+1) whenn ≦ 5 for (NH3) n ·((CH3)3N) m H+ andm=n+2 whenn ≦ 4 for (H2O) n ((CH3)3N) m H+ indicating that the cluster ions with these combinations have a stable closed shell structure. However, the pattern begins to break down whenn>5 for ammonia system andn>4 for water system. Thereupon, the most intense peaks are reached with one molecule less than the pattern required, i.e.m=2(n+1)?1 whenn=6 for (NH3) n ((CH3)3N) m H+ andm=(n+2)?1 whenn=5 for (H2O) n ((CH3)3N) m H+. These findings strongly suggest the onset of hydrogen-bonded ring structures from chain-like ones at critical cluster sizes. This is also supported by the studies of the metastable decomposition.  相似文献   

17.
Infrared photodissociation spectra of (CH3NH2) n clusters were measured fromn=2 ton=6 near the monomer absorption of the C-N stretching mode at 1044 cm?1 using a cw-CO2 laser. The clusters were size-selected by scattering from a helium beam. The spectrum of cold dimers shows a red (1038 cm?1) and a blue (1048 cm?1) shifted peak which is attributed to the non-equivalent position of the C-N in the open dimer structure. The larger clusters exhibit only one peak between 1045.4 cm?1 and 1046.0 cm?1 caused by the equivalent position of the C-N in the cyclic structures of the larger clusters. Structure calculations confirm these results. Secondly, the mixed complexes C2H4-CH3COCH3 and C2H4-(CH3COCH3)2 were investigated. The dimer spectrum, measured around the monomer frequency of the out-of-plane bending mode of C2H4 at 949 cm?1, shows two peaks at 946.2 cm?1 and 961.3 cm?1. This splitting is attributed to two different isomers that are found in configuration calculations. A similar behaviour is found for the trimer.  相似文献   

18.
The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized Hg n clusters, we determine the size dependence of the bond character and the ionization potentialI p (n). For neutral Hg n clusters we obtain a transition from van der Waals to covalent behaviour at the critical sizen c ~10–20 atoms. Results forI p (Hg n ) withn≤20 are in good agreement with experiments, and suggest that small Hg n + clusters can be viewed as consisting of a positive trimer core Hg 3 + surrounded byn?3 polarized neutral atoms.  相似文献   

19.
Photodissociation of negatively charged sulfur dioxide clusters (SO2) n ? , 2≦n≦11, was investigated in the wavelength range between 458 nm and 600 nm using a tandem mass spectrometer. The spectral position of the absorption band remains unchanged, however it exhibits narrowing with increasing cluster size. The smooth evolution of the spectra shows that the clusters are composed of a dimer anion core surrounded by neutral molecules. The analysis of the fragmentation products reveals that the absorption of a photon is followed by statistical evaporation of neutrals with a mean energy loss of 0.28±0.05 eV per evaporated monomer in the large cluster limit.  相似文献   

20.
The scattering behavior of neutral ammonia clusters off a LiF(100) surface is studied. Ammonia clusters are produced by a coexpansion of NH3 and Kr with an average kinetic energy of 48 meV per monomer molecule. Using single photon VUV laser ionization at λ = 118 nm (hv = 10.49 eV) the mass distribution of scattered particles is obtained in a reflecting time-of-flight mass spectrometer. Compared with the incoming cluster beam the average cluster size of the scattered particles is drastically decreased. The angular distribution of NH 3 + and NH 4 + after scattering reveals a strong inelastic interaction between the clusters and the LiF(100) surface which is described in the context of a thermokinetic model and a phonon excitation along the (001) azimuth of the LiF(100) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号