首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined. Based on lubrication theory, the squeeze force is calculated by deriving the pressure and velocity expressions. The results of the normal squeeze force are discussed, and fitting functions of the squeeze and correction coefficients are given. The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state, respectively. Furthermore, the slip correction coefficient decreases with the increase in the velocity. The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.  相似文献   

2.
IntroductionThesqueezeflowofafluidbetweentwodisksorspheresisofrelevancetomanyapplications,includingtheformingofpolymermaterials ,squeezeflowrheometerandlubricationofbearings.Thesqueezeflowinteractionbetweensolidparticlesisalsofundamentaltothecomplexrhe…  相似文献   

3.
The complete solution for the pressure and the velocity field up to O(De) of a dilute suspension of neutrally buoyant, non-Brownian rigid spheres suspended in an unbounded, weakly viscoelastic matrix fluid, where is the solid volume fraction and De is the Deborah number of the matrix fluid, is presented. The spheres are subjected to an arbitrary linear velocity profile at infinity. The analytical solution is used for the prediction of the bulk stress, and specifically for the calculation of the first and the second normal stress differences in simple shear and uniaxial elongational flows. A comparison of the results with available values reported in the literature is also offered. The final expressions for the bulk normal stress differences in shear and uniaxial elongational flow fully agree with those reported earlier by Greco et al., J. Non-Newton. Fluid Mech., 147 (2007) 1–10.  相似文献   

4.
5.
The research reported herein involved the study of the transient motion of a system consisting of an incompressible Newtonian fluid in an annulus between two concentric, rotating, rigid spheres. The primary purpose of the research was to study the use of a numerical method for analysing the transient motion that results from the interaction between the fluid in the annulus and the spheres which are started suddenly by the action of prescribed torques. The problems considered in this research included cases where: (a) one or both spheres rotate with prescribed constant angular velocities and (b) one sphere rotates due to the action of an applied constant or impulsive t?orque. In this research the coupled solid and fluid equations were solved numerically by employing the finite difference technique. With the approach adopted in this research, only the derivatives with respect to spatial variables were approximated with the use of the finite difference formulae. The steady state problem was also solved as a separate problem (for verification purposes), and the results were compared with those obtained from the solution of the transient problem. Newton's algorithm was employed to solve the algebraic equations which resulted from the steady state problem, and the Adams fourth-order predictor–corrector method was employed to solve the ordinary differential equations for the transient problem. Results were obtained for the streamfunction, circumferential function, angular velocity of the spheres and viscous torques acting on the spheres as a function of time for various values of the system dimensionless parameters.  相似文献   

6.
Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. We have discussed the uniqueness of the solution except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic field on the flow characteristic is explored numerically and it is concluded that the velocity at a point decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimensionless shear stress coefficient |F(0)| increases with increase in power-law index n when the value of the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the value of this ratio further differs from 1, the variation of |F(0)| with n is non-monotonic.  相似文献   

7.
The drift of spheres in a rotating fluid is investigated. The problem is studied experimentally and numerically using the Galerkin method. It is shown that for small angular velocities of the fluid Ω the drift velocity of the spheres is almost independent of Ω, but once a certain threshold value Ω* is attained the drift velocity rapidly decreases. The experimental dependence of the translational velocity of the sphere on the fluid angular velocity is explained on the basis of a theoretical analysis.  相似文献   

8.
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.  相似文献   

9.
The determination of the parameters of viscoplastic fluids subject to wall slip is a special challenge and accurate results are generally obtained only when a number of viscometers are utilized concomitantly. Here the characterization of the parameters of the Herschel-Bulkley fluid and its non-linear wall slip behavior is formulated as an inverse problem which utilizes the data emanating from capillary and squeeze flow rheometers. A finite element method of the squeeze flow problem is employed in conjunction with the analytical solution of the capillary data collected following Mooneys procedure, which uses dies with differing surface to volume ratios. The uniqueness of the solution is recognized as a major problem which limits the accuracy of the solution, suggesting that the search methodology should be carefully selected.  相似文献   

10.
A mathematical model is developed for the two-dimensional flow of an incompressible Newtonian fluid which is being squeezed between two rigid, impermeable plates. The fluid viscosity varies linearly with temperature. The model is intended to elucidate a problem of air bubble entrapment which arises in the manufacture of panel material, particularly in the manufacture of ‘corner’ profiles. The results show that when the two plates have the same shape, the pressure gradient is such that bubbles are likely to be expelled throughout the contact, except in the central region. When a corner profile is manufactured it is likely that bubbles will be retained, thereby leading to flaws in the final product.  相似文献   

11.
The squeeze flow of a Bingham-type material between finite circular disks is considered. The material is modelled assuming that the unyielded region behaves like a linear elastic core. A lubrication approximation is considered. It is shown that no paradox can arise, such as that has been pointed out for many years by various authors when the unyielded region in the fluid is supposed to be perfectly rigid. The unyielded region is shown to be always detached from the axis of symmetry. Some numerical simulations are worked out for different squeezing rates.  相似文献   

12.
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds‘ lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neelected.  相似文献   

13.
14.
A typical class of boundary conditions for squeeze flow problems in lubrication approximation is the one in which the squeezing rate and the width between the squeezing plates are constant. This hypothesis is justified by claiming that the plates moves so slowly that they can be considered static. In this short note we prove that this assumption leads to a contradiction and hence cannot be used.  相似文献   

15.
The flow of a power-law fluid is investigated in an asymmetric channel caused by the movement of peristaltic waves with the same speed but with different amplitudes and phases on the flexible walls of the channel. The differential equation governing the flow is non-linear and can admit non-unique solutions. There exist two different physically meaningful solutions one satisfying the boundary conditions at the upper wall and the other at the lower wall. The effects of the power-law nature of the fluid on the pumping characteristics and axial velocity are studied in detail.  相似文献   

16.
Waves that occur at the surface of a falling film of thin power-law fluid on a vertical plane are investigated. Using the method of integral relations an evolution equation is derived for two types of waves equation which are possible under long wave approximation. This equation reveals the presence of both kinematic and dynamic wave processes which may either act together or singularly dominate the wave field depending on the order of different parameters. It is shown that, at a small flow rate, kinematic waves dominate the flow field and the energy is acquired from the mean flow during the interaction of the waves, while, for high flow rate, inertial waves dominate and the energy comes from the kinematic waves. It is also found that this exchange of energy between kinematic and inertial waves strongly depends on the power-law index n. Linear stability analysis predicts the contribution of different terms in the wave mechanism. Further, it is found that the surface tension plays a double role: for a kinematic wave process, it exerts dissipative effects so that a finite amplitude case may be established, but for a dynamic wave process it yields dispersion. Further, it is shown that the non-Newtonian character n plays a vital role in controlling the role of the term that contains surface tension in the above processes.  相似文献   

17.
An analytical version of the discrete-ordinates method (the ADO method) is used with recently established analytical expressions for the rigid-sphere scattering kernels to develop concise and particularly accurate solutions to the viscous-slip, the diffusion-slip, and the half-space thermal-creep problems for a binary gas mixture described by the linearized Boltzmann equation. In addition to a computation of the viscous-slip, the diffusion-slip, and the thermal-slip coefficients, for the case of Maxwell boundary conditions for each of the two species, the velocity, heat-flow, and shear-stress profiles are established for each species of particles. Numerical results are reported for two binary mixtures (Ne–Ar and He–Xe) with various molar concentrations.  相似文献   

18.
Non-linear waves on the surface of a falling film of power-law fluid on a vertical porous plane are investigated. The waves are described by evolution equations generalising equations previously derived in the case of solid plane. It is shown that the slip condition on the interface between pure liquid and the porous substrate drastically changes structure of the steady waves travelling in the film.  相似文献   

19.
This communication considers the steady converging/diverging flow of a non-Newtonian viscous power-law fluid in a round cone. The motion is driven by a sink/source of mass at the origin. It is shown that the problem permits exact similarity solution for a particular value (n=4/3) of the fluid index. In this case a complete set of governing equations can be reduced to an ordinary differential equation, which is solved numerically for different values of the main non-dimensional parameters (the cone angle and the dimensionless sink/source intensity).  相似文献   

20.
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, av, is plotted for different nondimensional parameters such as conduction parameter, , the aspect ratios of the tube, and 0 and the index of power-law fluid, n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号