首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the integrated density of statesN(λ) of the difference Laplacian ?Δ on the modified Koch graph. We show thatN(λ) increases only with jumps and a set of jump points ofN(λ) is the set of eigenvalues of ?Δ with the infinite multiplicity. We establish also that $$0< C_1 \leqslant \mathop {\lim }\limits_{\lambda \to 0} \frac{{N(\lambda )}}{{\lambda ^{d_s /2} }}< \overline {\mathop {\lim }\limits_{\lambda \to 0} } \frac{{N(\lambda )}}{{\lambda ^{d_s /2} }} \leqslant C_2< \infty$$ whered s =2log5/log(40/3) is the spectral dimension of MKG.  相似文献   

2.
The inclusive production of photons in \(\bar pp\) interactions has been studied at incident momenta of 0.76 and 2.0 GeV/c. The inclusive cross sections for γ-production and the average multiplicities of γ, «n γ», are presented as a function of the charged prong topology. Results on the two particle correlation parametersf 00 andf ?0 are presented. The inclusive distributions of the Feynman variablex and of the transverse momentump T of the photons are compared with the expectations from charged pion distributions on the basis of charge independence. A search has been made for direct γ-production in \(\bar pp\) interactions at 0.76 GeV/c by looking for events which fit uniquely the hypothesis \(\bar pp \to m\pi ^ + + m\pi ^ - + \gamma \) . An estimate of the ratio $$R = \frac{{\sigma (\bar pp \to m\pi ^ + + m\pi ^ - + \gamma )}}{{\sigma (\bar pp \to m\pi ^ + + m\pi ^ - + \pi ^0 )}}$$ is given.  相似文献   

3.
On the basis of the analysis of the adele group (Tate's formula), a regularization for the divergent infinite product ofp-adic Г-functions $$\Gamma _p (\alpha ) = \frac{{1 - p^{\alpha - 1} }}{{[ - p^{ - \alpha } }}$$ is proposed, and the adelic formula is proved $$reg\coprod\limits_{p = 2}^\infty {\Gamma _p (\alpha )} = \frac{{\zeta (\alpha )}}{{\zeta (1 - \alpha )}}$$ whereζ(α) is the Riemannζ-function.  相似文献   

4.
We consider the zero-temperature behavior of a disordered array of quantum rotators given by the finite-volume Hamiltonian: $$H_\Lambda = - \mathop \Sigma \limits_{x \in \Lambda } \frac{{h(x)}}{2}\frac{{\partial ^2 }}{{\partial \varphi (x)^2 }} - J\mathop \Sigma \limits_{\left\langle {x,y} \right\rangle \in \Lambda } \cos (\varphi (x) - \varphi (y))$$ , wherex,yZ d , 〈,〉 denotes nearest neighbors inZ d ;J>0 andh={h(x)>0,xZ d } are independent identically distributed random variables with common distributiondμ(h), satisfying ∫h dμ(h)<∞ for some δ>0. We prove that for anym>0 it is possible to chooseJ(m) sufficiently small such that, if 0<J<J(m), for almost every choice ofh and everyxZ d the ground state correlation function satisfies $$\left\langle {\cos (\varphi (x) - \varphi (y))} \right\rangle \leqq C_{x,h,J} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x,h,J <∞.  相似文献   

5.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

6.
Scaling models of randomN×N hermitian matrices and passing to the limitN→∞ leads to integral operators whose Fredholm determinants describe the statistics of the spacing of the eigenvalues of hermitian matrices of large order. For the Gaussian Unitary Ensemble, and for many others'as well, the kernel one obtains by scaling in the “bulk” of the spectrum is the “sine kernel” $\frac{{\sin \pi (x - y)}}{{\pi (x - y)}}$ . Rescaling the GUE at the “edge” of the spectrum leads to the kernel $\frac{{Ai(x)Ai'(y) - Ai'(x)Ai(y)}}{{x - y}}$ , where Ai is the Airy function. In previous work we found several analogies between properties of this “Airy kernel” and known properties of the sine kernel: a system of partial differential equations associated with the logarithmic differential of the Fredholm determinant when the underlying domain is a union of intervals; a representation of the Fredholm determinant in terms of a Painlevé transcendent in the case of a single interval; and, also in this case, asymptotic expansions for these determinants and related quantities, achieved with the help of a differential operator which commutes with the integral operator. In this paper we show that there are completely analogous properties for a class of kernels which arise when one rescales the Laguerre or Jacobi ensembles at the edge of the spectrum, namely $$\frac{{J_\alpha (\sqrt x )\sqrt y J'_\alpha (\sqrt y ) - \sqrt x J'_\alpha (\sqrt x )J_\alpha (\sqrt y )}}{{2(x - y)}},$$ , whereJ α(z) is the Bessel function of order α. In the cases α=?1/2 these become, after a variable change, the kernels which arise when taking scaling limits in the bulk of the spectrum for the Gaussian orthogonal and symplectic ensembles. In particular, an asymptotic expansion we derive will generalize ones found by Dyson for the Fredholm determinants of these kernels.  相似文献   

7.
We interpret the recently observedU(3.1) mesons with the \(\Lambda \bar p\) + pions decays as the bound state of \(\Lambda ,\bar p\) andX 0(1480). TheX 0(1480) is a mesonium with \(Q^2 \bar Q^2 \) structures observed in γγ reactions and \(\bar pn\) annihilations. With this interpretation, we can understand its decay modes. Furthermore, we predict the ratio of \(\sigma (\Lambda \bar p\pi ^ + \pi ^ - )/\sigma (\Lambda \bar p\pi ^ + \pi ^ + )\) to be ?3.1 for centrally produced events and that the width of \(U^ - (\Lambda \bar p\pi ^ + \pi ^ - )\) to be greater than that of \(U^ + (\Lambda \bar p\pi ^ + \pi ^ + )\) . Both predictions seem to be in reasonable accord with the available data. We call for the detection of the \(\Lambda \bar p\pi ^ - \pi ^ - \) mode to verify the present interpretation.  相似文献   

8.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

9.
We calculate theon-shell fermion wave-function renormalization constantZ 2 of a general gauge theory, to two loops, inD dimensions and in an arbitrary covariant gauge, and find it to be gauge-invariant. In QED this is consistent with the dimensionally regularized version of the Johnson-Zumino relation: d logZ 2/da 0=i(2)D e 0 2 d D k/k 4=0. In QCD it is, we believe, a new result, strongly suggestive of the cancellation of the gauge-dependent parts of non-abelian UV and IR anomalous dimensions to all orders. At the two-loop level, we find that the anomalous dimension F of the fermion field in minimally subtracted QCD, withN L light-quark flavours, differs from the corresponding anomalous dimension of the effective field theory of a static quark by the gauge-invariant amount
  相似文献   

10.
We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by $$H = - J\sum\limits_{\left\langle {x,y} \right\rangle } {\sigma _3 (x)\sigma _3 (y) - \sum\limits_x {h(x)\sigma _1 (x)} } $$ whereJ>0,x,y∈Z d, σ1, σ3 are the usual Pauli spin 1/2 matrices, andh={h(x),x∈Z d} are independent identically distributed random variables. We consider the ground state correlation function 〈σ3(x3(y)〉 and prove:
  1. Letd be arbitrary. For anym>0 andJ sufficiently small we have, for almost every choice of the random transverse fieldh and everyxZ d, that $$\left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle \leqq C_{x,h} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x h <∞.
  2. Letd≧2. IfJ is sufficiently large, then, for almost every choice of the random transverse fieldh, the model exhibits long range order, i.e., $$\mathop {\overline {\lim } }\limits_{\left| y \right| \to \infty } \left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle > 0$$ for anyxZ d.
  相似文献   

11.
We consider a classical system, in a ν-dimensional cube Ω, with pair potential of the formq(r) + γ v φ(γr). Dividing Ω into a network of cells ω1, ω2,..., we regard the system as in a metastable state if the mean density of particles in each cell lies in a suitable neighborhood of the overall mean densityρ, withρ and the temperature satisfying $$f_0 (\rho ) + \tfrac{1}{2}\alpha \rho ^2 > f(\rho ,0 + )$$ and $$f''_0 (\rho ) + 2\alpha > 0$$ wheref(ρ, 0+) is the Helmholz free energy density (HFED) in the limit γ 0; α = ∫ φ(r)d v r andf 0 (ρ) is the HFED for the caseφ = 0. It is shown rigorously that, for periodic boundary conditions, the conditional probability for a system in the grand canonical ensemble to violate the constraints at timet > 0, given that it satisfied them at time 0, is at mostλt, whereλ is a quantity going to 0 in the limit $$|\Omega | \gg \gamma ^{ - v} \gg |\omega | \gg r_0 \ln |\Omega |$$ Here,r 0 is a length characterizing the potentialq, andx ? y meansx/y → +∞. For rigid walls, the same result is proved under somewhat more restrictive conditions. It is argued that a system started in the metastable state will behave (over times ?λ ?1) like a uniform thermodynamic phase with HFED f0(ρ) + 1/2αρ2, but that having once left this metastable state, the system is unlikely to return.  相似文献   

12.
The leading heavy-top two-loop corrections to theZb \(\bar b\) vertex are determined from a direct evaluation of the corresponding Feynman diagrams in the largem t limit. The leading one-loop top-mass effect is enhanced by \([{{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} \mathord{\left/ {\vphantom {{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} {(8\pi ^2 \sqrt 2 )}}} \right. \kern-0em} {(8\pi ^2 \sqrt 2 )}}]\) . Our calculation confirms a recent result of Barbieri et al..  相似文献   

13.
We study the plane rotator model with hamiltonian $$ - \frac{1}{2}\sum\limits_{x \ne y} {J_{xy} \frac{{\cos (\theta _x - \theta _y )}}{{\left| {\left. {x - y} \right|} \right.^{3 + \in } }}}$$ whereJ xy for different pair (x, y) are independent symmetric random variables. It is proved that for almost allJ, all the Gibbs statesP(J) are rotation invariant.  相似文献   

14.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

15.
We study perturbationsL=A+B of the harmonic oscillatorA=1/2(??2+x 2?1) on ?, when potentialB(x) has a prescribed asymptotics at ∞,B(x)~|x| V(x) with a trigonometric even functionV(x)=Σa mcosω m x. The eigenvalues ofL are shown to be λ k =k+μ k with small μ k =O(k ), γ=1/2+1/4. The main result of the paper is an asymptotic formula for spectral fluctuations {μ k }, $$\mu _k \sim k^{ - \gamma } \tilde V(\sqrt {2k} ) + c/\sqrt {2k} ask \to \infty ,$$ whose leading term \(\tilde V\) represents the so-called “Radon transform” ofV, $$\tilde V(x) = const\sum {\frac{{a_m }}{{\sqrt {\omega _m } }}\cos (\omega _m x - \pi /4)} .$$ as a consequence we are able to solve explicitly the inverse spectral problem, i.e., recover asymptotic part |x |V(x) ofB from asymptotics of {µ k }. 1   相似文献   

16.
Bounds are obtained on the unintegrated density of states ρ(E) of random Schrödinger operatorsH=?Δ + V acting onL 2(? d ) orl 2(? d ). In both cases the random potential is $$V: = \sum\limits_{y \in \mathbb{Z}^d } {V_y \chi (\Lambda (y))}$$ in which the \(\left\{ {V_y } \right\}_{y \in \mathbb{Z}^d }\) areIID random variables with densityf. The χ denotes indicator function, and in the continuum case the \(\left\{ {\Lambda (y)} \right\}_{y \in \mathbb{Z}^d }\) are cells of unit dimensions centered ony∈? d . In the finite-difference case Λ(y) denotes the sitey∈? d itself. Under the assumptionf ∈ L 0 1+? (?) it is proven that in the finitedifference casep ∈ L (?), and that in thed= 1 continuum casep ∈ L loc (?).  相似文献   

17.
18.
Based on the conserved-vector-current (CVC) hypothesis and a four-ρ-resonance unitary and analytic VMD model of the pion electromagnetic form factor, theσ tot(E v lab ) and dσdE π lab of the weak \(\bar v_e e^ - \to \pi ^ - \pi ^0\) process are predicted theoretically for the first time. Their experimental approval could verify the CVC hypothesis for all energies above the two-pion threshold. Since, unlike the electromagnetic e+e?→π+π? process, there is no isoscalar vector-meson contribution to the weak \(\bar v_e e^ - \to \pi ^ - \pi ^0\) reaction, accurate measurements of theσ tot(E v lab ) that moreover is strengthened with energyE v lab linearly could solve now a widely discussed problem of the mass specification of the first excited state of theρ(770) meson. As a by-product, an equality \(\sigma _{tot} (\bar v_e e^ - \to \pi ^ - \pi ^0 ) = \sigma _{tot} (e^ + e^ - \to \pi ^ - \pi ^0 )\) is predicted for \(\sqrt s \approx 70 GeV\) .  相似文献   

19.
The wave and scattering operators for the equation $$\left( {\square + m^2 } \right)\varphi + \lambda \varphi ^2 = 0$$ withm>0 and λ>0 on four-dimensional Minkowski space are analytic on the space of finite-energy Cauchy data, i.e.L 2 1 (R 3)⊕L 2(R 3).  相似文献   

20.
We consider a continuous time random walk X in a random environment on ?+ such that its potential can be approximated by the function V:?+→? given by $V(x)=\sigma W(x) -\frac {b}{1-\alpha}x^{1-\alpha}$ where σW a Brownian motion with diffusion coefficient σ>0 and parameters b, α are such that b>0 and 0<α<1/2. We show that P-a.s. (where P is the averaged law) $\lim_{t\to\infty} \frac{X_{t}}{(C^{*}(\ln\ln t)^{-1}\ln t)^{\frac{1}{\alpha}}}=1$ with $C^{*}=\frac{2\alpha b}{\sigma^{2}(1-2\alpha)}$ . In fact, we prove that by showing that there is a trap located around $(C^{*}(\ln\ln t)^{-1}\ln t)^{\frac{1}{\alpha}}$ (with corrections of smaller order) where the particle typically stays up to time t. This is in sharp contrast to what happens in the “pure” Sinai’s regime, where the location of this trap is random on the scale ln2 t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号