首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

2.
A mathematical analysis has been carried out to study magnetohydrodynamic boundary layer flow, heat and mass transfer characteristic on steady two-dimensional flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with uniform magnetic field. Momentum boundary layer equation takes into account of transverse magnetic field whereas energy equation takes into account of Ohmic dissipation due to transverse magnetic field, thermal radiation and non-uniform source effects. An analysis has been performed for heating process namely the prescribed wall heat flux (PHF case). The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved very efficiently by finite-difference method. Favorable comparisons with previously published work on various special cases of the problem are obtained. The effects of various physical parameters on velocity, temperature, concentration distributions are presented graphically and in tabular form.  相似文献   

3.
This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of viscoelastic liquid over a stretching sheet with non-uniform heat source, where the flow is generated due to a linear stretching of the sheet and influenced by uniform magnetic field applied vertically. Here an analysis has been carried out to study the effect of magnetic field on the visco-elastic liquid flow and heat transfer over a stretching sheet with non-uniform heat source. The non-linear boundary layer equation for momentum is converted into ordinary differential equation by means of similarity transformation and is solved exactly. Heat transfer differential equation is also solved analytically. The effect of magnetic field on velocity, skin friction and temperature profiles are presented graphically and discussed.  相似文献   

4.
This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equation corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. It is found that with the increase of magnetic field intensity the fluid velocity decreases but the temperature increases at a particular point of the heated stretching surface. Impact of thermophoresis particle deposition with chemical reaction in the presence of heat source/sink plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

5.
This work looks at the heat transfer effects on the flow of a second grade fluid over a radially stretching sheet. The axisymmetric flow of a second grade fluid is induced due to linear stretching of a sheet. Mathematical analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST case) and (ii) prescribed surface heat flux (PHF case). The modelled non-linear partial differential equations in two dependent variables are reduced into a partial differential equation with one dependent variable. The resulting non-linear partial differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence is properly discussed. The series solutions and graphs of velocity and temperature are constructed. Particular attention is given to the variations of emerging parameters such as second grade parameter, Prandtl and Eckert numbers.  相似文献   

6.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

7.
The effect of radiation on MHD steady asymmetric flow of an electrically conducting fluid past a stretching porous sheet in the presence of radiation has been analyzed. Exact solutions for the velocity and temperature fields have been derived and the effects of radiation, magnetic, Prandtl number, wall temperature and suction (or injection) parameters have been studied with the help of graphs.  相似文献   

8.
An analysis has been carried out to describe mixed convection heat transfer in the boundary layers on an exponentially stretching continuous surface with an exponential temperature distribution in the presence of magnetic field, viscous dissipation and internal heat generation/absorption. Approximate analytical similarity solutions of the highly non-linear momentum and energy equations are obtained. The present results are found to be in excellent agreement with previously published work on various special cases of the problem. Numerical results for temperature distribution and the local Nusselt number have been obtained for different values of the governing parameters. The numerical solutions are obtained by considering an exponential dependent stretching velocity and prescribed boundary temperature on the flow directional coordinate. The effects of various physical parameters like Prandtl number, Hartman number, Grashof number on dimensionless heat transfer characteristics are discussed in detail. In particular, it has been found that increase in Prandtl number decreases the skin-friction coefficient at the stretching surface, while increase in the strength of the magnetic field leads to increase in the local Nusselt number.  相似文献   

9.
A study has been carried out to obtain the solutions for heat and mass transfer from natural convection flow along a vertical surface with temperature-dependent fluid viscosity embedded in a porous medium due to thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects. This paper concerns with a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The impact of thermophoresis particle deposition with chemical reaction in the presence of thermal-diffusion and diffusion-thermo effects plays an important role on the temperature and concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

10.
An approximate solution to the problem of steady laminar flow of a viscous incom pressible electrically con- ducting fluid over a stretching sheet is presented. The approach is based on the idea of stretching the variables of the flow problem and then using least squares method to minimize the residua of a differential equation. The effects of the magnetic field on the flow characteristics are demonstrated through numerical computations with different values of the Hartman number.  相似文献   

11.
An approximate solution to the problem of steady laminar flow of a viscous incompressible electrically conducting fluid over a stretching sheet is presented. The approach is based on the idea of stretching the variables of the flow problem and then using least squares method to minimize the residual of a differential equation. The effects of the magnetic field on the flow characteristics are demonstrated through numerical computations with different values of the Hartman number.  相似文献   

12.
A new approach, named the exponential function method (EFM) is used to obtain solutions to nonlinear ordinary differential equations with constant coefficients in a semi-infinite domain. The form of the solutions of these problems is considered to be an expansion of exponential functions with unknown coefficients. The derivative and product operational matrices arising from substituting in the proposed functions convert the solutions of these problems into an iterative method for finding the unknown coefficients. The method is applied to two problems: viscous flow due to a stretching sheet with surface slip and suction; and mageto hydrodynamic (MHD) flow of an incompressible viscous fluid over a stretching sheet. The two resulting solutions are compared against some standard methods which demonstrates the validity and applicability of the new approach.  相似文献   

13.
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.  相似文献   

14.
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.  相似文献   

15.
The combined effects of stratification and magnetic field on the unsteady motion of a viscous, electrically conducting fluid between two rotating disks are analysed. Solutions are obtained for the linearized equations under Boussinesq approximation and steady state solutions are deduced from them. The results are compared with those obtained by Loper and Benton and Balanet al. Graphs are presented for the steady state velocity, magnetic field and temperature distributions.  相似文献   

16.
在横向磁场作用下,不可压缩的粘性导电流体,流经一个半无限的竖板,完成了壁面温度变化对磁流体动力学流动的分析.假定由粘性耗散和感应磁场产生的热量可以忽略不计.无量纲的控制方程为二维非稳态耦合的非线性方程.结果显示,磁场参数对空气和水的速度有着抑制作用.  相似文献   

17.
就不可压缩粘性纳米流体,流经半无限垂直伸展平面并计及热分层时,研究该流体的MHD自然对流和热交换.通过特定形式的Lie对称群变换,即单参数群变换,将所考虑问题的偏微分控制方程变换为常微分方程组.然后,使用基于打靶法的Runge Kutta Gill法进行数值求解.最后得到结论:流场、温度和纳米颗粒体积率受热分层和磁场的影响很显著.  相似文献   

18.
Series solution of magnetohydrodynamic (MHD) and rotating flow over a porous shrinking sheet is obtained by a homotopy analysis method (HAM). The viscous fluid is electrically conducting in the presence of a uniform applied magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Similarity solutions of coupled non-linear ordinary differential equations resulting from the momentum equation are obtained. Convergence of the obtained solutions is ensured by the proper choice of auxiliary parameter. Graphs are sketched and discussed for various emerging parameters on the velocity field. The variations of the wall shear stress f″(0) and ?g′(0) are also tabulated and analyzed.  相似文献   

19.
Hydromagnetic effects on the three-dimensional flow past a porous plate   总被引:2,自引:0,他引:2  
Hydromagnetic effects on the three-dimensional flow of an electrically conducting viscous incompressible fluid past a porous plate with periodic suction has been analysed. The uniform flow is subjected to a transversely applied magnetic field. The mathematical analysis is presented for the hydromagnetic boundary layer flow neglecting the induced magnetic field. Approximate solutions for the components of velocity field and the skin-frictions due to them are obtained and discussed with the help of a graph and tables.  相似文献   

20.
We establish existence and uniqueness results for a general class of coupled nonlinear third order differential equations arising in flow and heat transfer problems. We consider solutions over the semi-infinite interval. As special cases, we recover the existence and uniqueness results of solutions for the following physically meaningful scenarios (among others): (i) flow and heat transfer over a stretching sheet, (ii) flow and heat transfer over a nonlinearly stretching porous sheet, (iii) linear convective flow and heat transfer over a porous nonlinearly stretching sheet and (iv) nonlinear convective heat transfer over a porous nonlinearly stretching sheet. In all the cases the effects of viscous dissipation and the internal heat generation/absorption on the flow and heat transfer characteristics are included. Moreover, the obtained results are applicable to several problems dealing with flow and heat transfer phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号