首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of micro-ramps on a shock wave/turbulent boundary layer interaction   总被引:2,自引:0,他引:2  
Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of the unperturbed boundary layer thickness and the measurement planes are located 0.1 and 0.6 boundary layer thicknesses from the wall. The micro-ramps generate packets of individual vortex pairs downstream of their vertices, which produce counter-rotating longitudinal streamwise vortex pairs in a time-averaged view. These structures induce a pronounced spanwise variation of the flow properties, namely the mixing across the boundary layer interface. The probability of reversed-flow occurrence is decreased by 20 and 30% for the single- and double-row configurations, respectively. Both configurations of micro-ramps stabilize the shock motion by reducing the length of its motion by about 20% in the lower measurement plane. The results are summarized by a conceptual model describing the boundary layer’s and interaction’s flow pattern under the effect of the micro-ramps.  相似文献   

2.
A combined theoretical and experimental study is presented for the interaction between crossing shock waves generated by (10°, 10°) sharp fins and a flat plate turbulent boundary layer at Mach 8.3. The theoretical model is the full 3-D mean compressible Reynolds-averaged Navier-Stokes RANS) equations incorporating the algebraic turbulent eddy viscosity model of Baldwin and Lomax. A grid refinement study indicated that adequate resolution of the flowfield has been achieved. Computed results agree well with experiment for surface pressure and surface flow patterns and for pitot pressure and yaw angle profiles in the flowfield. The computations, however, significantly overpredict surface heat transfer. Analysis of the computed flowfield results indicates the formation of complex streamline and wave structures within the interaction region.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

3.
We present here experimental results in a shock wave/turbulent boundary layer interaction at Mach number of 2.3 impinged by an oblique shock wave, with a deflection angle of 9.5°, as installed in the supersonic wind tunnel of the IUSTI laboratory, France. For such a shock intensity, strong unsteadiness are developing inside the separated zone involving very low frequencies associated with reflected shock motions.The present work consists in simultaneous PIV velocity fields and unsteady wall pressure measurements. The wall pressure and PIV measurements were used to characterize the pressure distribution at the wall in an axial direction, and the flow field associated. These results give access for the first time to the spatial-time correlation between wall pressure and velocity in a shock wave turbulent boundary layer interaction and show the feasibility of such coupling techniques in compressible flows. Linear Stochastic Estimation (LSE) coupled with Proper Orthogonal Decomposition (POD) has been applied to these measurements, and first results are presented here, showing the ability of these techniques to reproduce both the unsteady breathing of the recirculating bubble at low frequency and the Kelvin–Helmholtz instabilities developing at moderate frequency.  相似文献   

4.
To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume “fat” light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.  相似文献   

5.
The aim of the present study is to examine the accuracy and improvement of various numerical methods in the solution of the transonic shock/turbulent boundary layer interaction problem and to show that a significant source of numerical inaccuracies in turbulent flows is not only the inadequacy of the turbulence model but also the numerical discretization. Comparisons between a Riemann solver and a flux-vector-splitting method as well as between various numerical high-order extrapolation schemes with corresponding experimental results are presented.  相似文献   

6.
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0∼4.7)×107/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30° for a sweepback angle of 67.6°. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10° and secondary separation were detected at deflection of ϑ≥20°. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements atM≥6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. The project supported by China Academy of Launch Vehicle Technology  相似文献   

7.
Gol'dfel'd  M. A. 《Fluid Dynamics》1985,20(5):728-734
An experimental study is made of the turbulent boundary layer in its interaction with a shock wave, the purpose being to clarify questions connected with the increase in the fullness of the velocity profiles. New systematic data are obtained on the development of the boundary layer, and its structure and asymptotic behavior beyond the interaction region. These results are for axisymmetric flow in the range of Mach numbers M=2–4 and angles of rotation of the flow 10–25°. Conditions of developed separation are included. Extensive information about the general properties of flows with separation has been obtained in a number of studies. A survey of these may be found, for example, in [1, 2]. Certain questions about the separation and reattachment of the boundary layer are clarified. The dimensions of the separation region are determined and its structure studied in detail for various shapes of the surface around which the flow takes place. Nevertheless it has not yet proved possible to reach a complete understanding of this complex phenomenon. Usually plane models have been used for the investigations, but in this case it is evidently impossible to exclude completely the influence of end effects on the flow in the interaction zone. Therefore it is preferable to study such flows in axisymmetric models; this considerably eases the task of analyzing and interpreting the results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 75–82, September–October, 1985.  相似文献   

8.
9.
Difference experiments were carried out in a low-Reynolds number (490 based on momentum thickness) flat-plate boundary layer. Particle image velocimetry (PIV) was used to measure the two velocity components parallel to the plate in the boundary layer with and without weak localized suction through two holes at suction speeds of less than 1% of the free-stream value under otherwise identical conditions. The results from the preliminary PIV data show that suction does not affect the mean streamwise velocity profile, but decelerates the boundary layer in the vicinity of the suction holes. This deceleration is on average 6% of the mean speed at 13 viscous length scales above the plate and persists for at least 10 hole diameters downstream of the suction holes. Two-dimensional correlations of streamwise velocity fluctuations imply that even these low suction levels reduce the cross-stream and streamwise length scales in the boundary layer. Received: 22 December 1998/Accepted: 17 April 2000  相似文献   

10.
Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.This work was supported by the Chinese National Science Foundation. Thanks for Prof. Z. B. Lin and Miss X. Y. Feng for their helps. The authors wish to express thanks to Professor W. Merzkirch who has helped us to check the paper again and again.  相似文献   

11.
An experimental investigation into the mechanism of shock wave oscillation in compression ramp-generated shock wave/turbulent boundary layer interactions is presented. Particular emphasis is focused upon documenting the respective roles played by both burst-sweep events in the turbulent boundary layer immediately upstream of the interaction and the downstream separated shear layer upon unsteady shock front motion. Unlike the majority of compression ramp experiments which involve bulk separation and large-scale shock motion, consideration is given here to comparatively “weak” interactions in which the streamwise spatial excursion of the shock front is always less than one boundary layer thickness. In this manner any shock motion due to upstream burst-sweep events should be more apparent in relation to that oscillation associated with the separated region. A discrete Hilbert transform-based conditional sampling technique is used to obtain wall pressure measurements conditioned to burst-sweep events. The conditional sampling technique forms the basis by which the instantaneous shock motion is conditioned to the occurrence of upstream bursting. The relationship between the separation bubble and shock motion is also explored in detail. The results of the experiments indicate that the separation bubble represents a first-order effect on shock oscillation. Although it is demonstrated theoretically that the burst-sweep cycle can also give rise to unsteady shock motion of much lower amplitude, the experiments clearly demonstrate that there is no discernible statistical relationship between burst events and spanwise coherent shock front motion.  相似文献   

12.
Particle image velocimetry (PIV) measurements were carried out on a backward-facing step flow at a Reynolds number of Reh=UXh/9=4,660 (based on step height and freestream velocity). In-plane velocity, out-of-plane vorticity, Reynolds stress and turbulent kinetic energy production measurements in the x-y and x-z planes of the flow are presented. Proper orthogonal decomposition was performed on both the fluctuating velocity and vorticity fields of the x-y plane PIV data using the method of snapshots. Low-order representations of the instantaneous velocity fields were reconstructed using the velocity modes. These reconstructions provided insight into the contribution that the various length scales make to the spatial distribution of mean and turbulent flow quantities such as Reynolds stress and turbulent kinetic energy production. Large scales are found to contribute to the Reynolds stresses and turbulent kinetic energy production downstream of reattachment, while small scales contribute to the intense Reynolds stresses in the vicinity of reattachment.  相似文献   

13.
An experimental study has been conducted to examine the control effectiveness of dimples on the glancing shock wave turbulent boundary layer interaction produced by a series of hemi-cylindrically blunted fins at Mach numbers 0.8 and 1.4, and at angles of sweep 0°, 15°, 30° and 45°. Schlieren photography, oil flow, pressure sensitive paints, and pressure tappings were employed to examine the characteristics of the induced flow field. The passive control technique used a series of 2 mm diameter, 1 mm deep indents drilled across the hemi-cylindrical leading edge at angles 0°, 45° and 90°. The effects of dimples were highly dependent on their orientation relative to the leading edge apex, and the local boundary layer properties.   相似文献   

14.
15.
In this paper computational results for two different types of shock wave / turbulent boundary layer interaction flows are presented. It is shown that upstream effects of the shock induced separation cannot be reproduced by Wilcox's (1991) k--model, whereas downstream of the interaction, predictions of pressure distribution and skin friction are acceptable. The inclusion of the compressible part of the dissipation rate and the pressure dilatation in the model has noticeable, but not dramatic effects on wall pressure and skin friction in the selected flow cases.  相似文献   

16.
An asymptotic theory of the interaction of a turbulent boundary layer on a plate with a normal shock wave of low intensity has been constructed in various studies [1–4] under the assumption that the averaged velocity of the particles in the boundary layer in front of the interaction region satisfies a logarithmic law. In the present paper a different approach to this problem is proposed based on a power law of the velocity in the undisturbed boundary layer. The obtained results give different estimates for not only the sizes of the characteristic flow regions in the interaction region but also for the shock intensity leading to boundary layer separation.  相似文献   

17.
Spatial evolution of a small amplitude localized disturbance introduced into the laminar boundary layer of a flat plate has been studied experimentally using the particle image velocimetry (PIV) technique. PIV data have been acquired in the spanwise and wall normal planes. Long and well defined high and low speed streaks are seen in the spanwise plane. The number of streaks are found to increase in the downstream direction. Breathing mode type oscillation of the boundary layer is observed. Associated with the streaks and akin to the bypass transition, ‘backward’ and ‘forward’ jet like structures of the fluctuating velocity components are observed.AS Banerjee: summer trainee, IIT Kharagpur, India  相似文献   

18.
The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.  相似文献   

19.
Particle image velocimetry measurements in complex geometries   总被引:5,自引:0,他引:5  
 One of the advantages of Particle Image Velocimetry (PIV) is its ability to determine the instantaneous flow field over two- or three-dimensional domains. Yet PIV has had limited application to complex flow passages because of the difficulty in replicating these geometries with optically transparent materials. In this work, we describe a method for overcoming this difficulty using rapid prototyping techniques. As an illustrative example, the technique has been used to characterize flow in a model of the human nasal cavity. Received: 12 January 1999/Accepted: 30 September 1999  相似文献   

20.
An enhanced delayed detached eddy simulation of a shock wave/boundary layer interaction in an over-expanded planar transonic nozzle has been carried out to predict the fundamental features of shock low-frequency unsteadiness. The modification of the sub-grid length-scale proposed in Shur et al. (2015) has been implemented to attenuate some well-known problems of detached eddy simulation: the modeled-stress depletion in the switch region between RANS and LES and the consequent delay of transition to turbulence at the onset of separation. The comparison of the computational results with the experimental data shows that the enhanced DDES leads to significant improvements in the estimation of some flow features with respect to a different DDES version, even though some discrepancies are still observable in the distribution of the mean wall pressure, and additional work is needed to further improve the transition from modeled to resolved turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号