首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
广义几何规划的全局优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
对许多工程设计中常用的广义几何规划问题(GGP)提出一种确定性全局优化算法,该算法利用目标和约束函数的线性下界估计,建立GGP的松弛线性规划(RLP),从而将原来非凸问题(GGP)的求解过程转化为求解一系列线性规划问题(RLP).通过可行域的连续细分以及一系列线性规划的解,提出的分枝定界算法收敛到GGP的全局最优解,且数值例子表明了算法的可行性.  相似文献   

2.
带自由变量的广义几何规划(FGGP)问题广泛出现在证券投资和工程设计等实际问题中.利用等价转换及对目标函数和约束函数的凸下界估计,提出一种求(FGGP)问题全局解的凸松弛方法.与已有方法相比,方法可处理符号项中含有更多变量的(FGGP)问题,且在最后形成的凸松弛问题中含有更少的变量和约束,从而在计算上更容易实现.最后数值实验表明文中方法是可行和有效的.  相似文献   

3.
申培萍  靳利 《应用数学》2012,25(4):725-731
对带自由变量的广义几何规划问题(FGGP)给出一全局优化算法.该算法先利用等价转换把(FGGP)中的自由变量转化为正变量,再通过凸化方案建立了(FGGP)的松弛凸规划(RCP).通过对(RCP)可行域的细分以及一系列(RCP)的求解过程,提出的算法收敛到(FGGP)的全局最优解,且数值例子表明了算法的可行性.  相似文献   

4.
A Geometric Terrain Methodology for Global Optimization   总被引:1,自引:0,他引:1  
Global optimization remains an important area of active research. Many macroscopic and microscopic applications in science and engineering still present formidable challenges to current global optimization techniques. In this work, a completely different, novel and general geometric framework for continuous global optimization is described. The proposed methodology is based on intelligent movement along the valleys and ridges of an appropriate objective function using downhill, local minimization calculations defined in terms of a trust region method and uphill integration of the Newton-like vector field combined with intermittent SQP corrector steps. The novel features of the proposed methodology include new rigorous mathematical definitions of valleys and ridges, the combined use of objective function and gradient surfaces to guide movement, and techniques to assist both exploration and termination. Collisions with boundaries of the feasible region, integral curve bifurcations, and the presence of non-differentiabilities are also discussed. A variety of examples are used to make key concepts clear and to demonstrate the reliability, efficiency and robustness of terrain methods for global optimization.  相似文献   

5.
This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality.  相似文献   

6.
This article presents a branch-and-bound algorithm for globally solving the problem (P) of maximizing a generalized concave multiplicative function over a compact convex set. Since problem (P) does not seem to have been studied previously, the algorithm is apparently the first algorithm to be proposed for solving this problem. It works by globally solving a problem (P1) equivalent to problem (P). The branch-and-bound search undertaken by the algorithm uses rectangular partitioning and takes place in a space which typically has a much smaller dimension than the space to which the decision variables of problem (P) belong. Convergence of the algorithm is shown; computational considerations and benefits for users of the algorithm are given. A sample problem is also solved.  相似文献   

7.
A Finite Algorithm for Global Minimization of Separable Concave Programs   总被引:3,自引:0,他引:3  
Researchers first examined the problem of separable concave programming more than thirty years ago, making it one of the earliest branches of nonlinear programming to be explored. This paper proposes a new algorithm that finds the exact global minimum of this problem in a finite number of iterations. In addition to proving that our algorithm terminates finitely, the paper extends a guarantee of finiteness to all branch-and-bound algorithms for concave programming that (1) partition exhaustively using rectangular subdivisions and (2) branch on the incumbent solution when possible. The algorithm uses domain reduction techniques to accelerate convergence; it solves problems with as many as 100 nonlinear variables, 400 linear variables and 50 constraints in about five minutes on an IBM RS/6000 Power PC. An industrial application with 152 nonlinear variables, 593 linear variables, and 417 constraints is also solved in about ten minutes.  相似文献   

8.
This paper revisits an efficient procedure for solving posynomial geometric programming (GP) problems, which was initially developed by Avriel et al. The procedure, which used the concept of condensation, was embedded within an algorithm for the more general (signomial) GP problem. It is shown here that a computationally equivalent dual-based algorithm may be independently derived based on some more recent work where the GP primal-dual pair was reformulated as a set of inexact linear programs. The constraint structure of the reformulation provides insight into why the algorithm is successful in avoiding all of the computational problems traditionally associated with dual-based algorithms. Test results indicate that the algorithm can be used to successfully solve large-scale geometric programming problems on a desktop computer.  相似文献   

9.
黄正海  徐尚文 《应用数学》2007,20(2):316-321
本文给出了一类新的求解箱约束全局整数规划问题的填充函数,并讨论了其填充性质.基于提出的填充函数,设计了一个求解带等式约束、不等式约束、及箱约束的全局整数规划问题的算法.初步的数值试验结果表明提出的算法是可行的。  相似文献   

10.
To solve a system of nonlinear equations, Wu wen-tsun introduced a new formative elimination method. Based on Wu's method and the theory of nonlinear programming, we here propose a global optimization algorithm for nonlinear programming with rational objective function and rational constraints. The algorithm is already programmed and the test results are satisfactory with respect to precision and reliability.  相似文献   

11.
Generalized geometric programming (GGP) problems occur frequently in engineering design and management. Some exponential-based decomposition methods have been developed for solving global optimization of GGP problems. However, the use of logarithmic/exponential transformations restricts these methods to handle the problems with strictly positive variables. This paper proposes a technique for treating non-positive variables with integer powers in GGP problems. By means of variable transformation, the GGP problem with non-positive variables can be equivalently solved with another one having positive variables. In addition, we present some computationally efficient convexification rules for signomial terms to enhance the efficiency of the optimization approach. Numerical examples are presented to demonstrate the usefulness of the proposed method in GGP problems with non-positive variables.  相似文献   

12.
A New Filled Function Method for Global Optimization   总被引:3,自引:0,他引:3  
A novel filled function is suggested in this paper for identifying a global minimum point for a general class of nonlinear programming problems with a closed bounded domain. Theoretical and numerical properties of the proposed filled function are investigated and a solution algorithm is proposed. The implementation of the algorithm on several test problems is reported with satisfactory numerical results.  相似文献   

13.
为在有界闭集上寻找非光滑函数的全局极小点,本文在文献[12]的基础上提出了一个改进的填充函数定义,然后给出了一个新的双参数填充函数.讨论了所给填充函数的理论和数值性质并设计了相应的算法.分析表明所给填充函数对参数的选择优于相关文献中的结果.数值实验表明,本文所给出的新的填充函数算法是有效的.  相似文献   

14.
Many local optimal solution methods have been developed for solving generalized geometric programming (GGP). But up to now, less work has been devoted to solving global optimization of (GGP) problem due to the inherent difficulty. This paper considers the global minimum of (GGP) problems. By utilizing an exponential variable transformation and the inherent property of the exponential function and some other techniques the initial nonlinear and nonconvex (GGP) problem is reduced to a sequence of linear programming problems. The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Test results indicate that the proposed algorithm is extremely robust and can be used successfully to solve the global minimum of (GGP) on a microcomputer.  相似文献   

15.
This paper presents a new method for solving global optimization problems. We use a local technique based on the notion of discrete gradients for finding a cone of descent directions and then we use a global cutting angle algorithm for finding global minimum within the intersection of the cone and the feasible region. We present results of numerical experiments with well-known test problems and with the so-called cluster function. These results confirm that the proposed algorithms allows one to find a global minimizer or at least a deep local minimizer of a function with a huge amount of shallow local minima.  相似文献   

16.
为确定广义线性比式和规划问题(GFP)的全局最优解,提出一个新的分支定界方法.在算法中,分支过程采用单纯形对分规则,且界的估计通过一些线性规划问题的求解完成.给出算法的收敛性证明.数值试验结果显示算法是有效可行的.  相似文献   

17.
广义拟牛顿算法对一般目标函数的收敛性   总被引:2,自引:0,他引:2  
本文证明了求解无约束最优化的广义拟牛顿算法在Goldstein非精确线搜索下对一般目标函数的全局收敛性,并在一定条件下证明了算法的局部超线性收敛性。  相似文献   

18.
By applying the option pricing theory ideas, this paper models the estimation of firm value distribution function as an entropy optimization problem, subject to correlation constraints. It is shown that the problem can be converted to a dual of a computationally attractive primal geometric programming (GP) problem and easily solved using publicly available software. A numerical example involving stock price data from a Japanese company demonstrates the practical value of the GP approach. Noting the use of Monte Carlo simulation in option pricing and risk analysis and its difficulties in handling distribution functions subject to correlations, the GP based method discussed here may have some computational advantages in wider areas of computational finance in addition to the application discussed here.  相似文献   

19.
Dinkelbach's global optimization approach for finding the global maximum of the fractional programming problem is discussed. Based on this idea, a modified algorithm is presented which provides both upper and lower bounds at each iteration. The convergence of the lower and upper bounds to the global maximum function value is shown to be superlinear. In addition, the special case of fractional programming when the ratio involves only linear or quadratic terms is considered. In this case, the algorithm is guaranteed to find the global maximum to within any specified tolerance, regardless of the definiteness of the quadratic form.  相似文献   

20.
单位球面x2+ y2+ z2=1的赤道上(z=0)任意给定不同的三点A,B,C,求上半球面上(z≥0)上的一点D,使得距离和|AD|+|BD|+|CD|取得最大值.通过数值搜索知道,使距离和取得最大值的点D很多情况下位于赤道上,少数情况下位于半球面内部.通过角度计算,同时借助计算机辅助推导,发现了点D在大多数情况下位于...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号