首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The high-yield synthesis, spectroscopic and structural determination of three new uranium(IV) and thorium(IV)ate complexes supported by three different diamido ether ligands are reported. The reaction of Li2[2,6-iPr2PhN(CH2CH2)]2O (Li2[DIPPNCOCN]) with 1 equiv. of UCl4 in THF generates [DIPPNCOCN]UCl3Li(THF)2(1), while reaction in toluene/ether gives salt-free [DIPPNCOCN]UCl2.1/2C7H8(2), which was identified by paramagnetically shifted 1H NMR. Reaction of 0.5 equiv. of {[tBuNON]UCl2}2([tBuNON]=[(CH3)3CN(Si(CH3)2)]2O2-) with 3.5 equiv. LiI in toluene and a minimal amount of THF results in [tBuNON]UI3Li(THF)2(3) and is very similar in structure to 1. {[MesNON]ThCl3Li(THF)}2(4), a dimeric complex with a Th2Li2Cl6 core, is prepared by reaction of Li2[2,4,6-Me3PhN(Si(CH3)2)]2O (Li2[MesNON]) with ThCl4 in THF. The analogous reaction in toluene did not yield the salt-free complex but rather a sterically crowded diligated compound, [MesNON]2Th (5), which was also structurally characterized. Complex 5 was prepared rationally by reacting 2 equiv. Li2[MesNON] with ThCl4 in toluene. The reaction of 1 and 3 with 2 equiv. of LiCH2Si(CH3)3 generates the stable, salt-free organoactinides [DIPPNCOCN]U(CH2Si(CH3)3)2(6) and [tBuNON]U(CH2Si(CH3)3)2(7). Complex 6 was structurally characterized. These reactions illustrate the viability of ate complexes as useful synthetic precursors.  相似文献   

2.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

3.
Treatment of UCl4 with the hexadentate Schiff bases H2Li in thf gave the expected [ULiCl2(thf)] complexes [H2Li=N,N'-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i= 1), R = 1,3-propanediamine (i= 2), R = 2-amino-benzylamine (i= 3), R = 2-methyl-1,2-propanediamine (i= 4), R = 1,2-phenylenediamine (i= 5)]. The crystal structure of [UL4Cl2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl4 with H4Li in pyridine did not afford the mononuclear products [U(H2Li)Cl2(py)x] but gave instead polynuclear complexes [H4Li=N,N'-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i= 6), R = 2-amino-benzylamine (i= 7) or R = 2-methyl-1,2-propanediamine (i= 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(iv) complexes [Hpy]2[U4(L6)2(H2L6)2Cl6] (6a) and [Hpy]2[U4(L7)2(H2L7)2Cl6][U4(L7)2(H2L7)2Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6)2(H2L6)2Cl4(py)2] (6b). The hexanuclear complex [Hpy]2[U6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a.2HpyCl.2py, 6b.6py, 7.16py and 8.6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.  相似文献   

4.
In the title complex, [UCl(C2H6OS)7]Cl3, the uranium metal center is coordinated in a distorted bicapped trigonal prism geometry by seven O atoms from di­methyl sulfoxide ligands and by a terminal chloride ligand. Charge balance is maintained by three outer‐sphere chloride ions per uranium(IV) metal center. Principle bond lengths include U—O 2.391 (2)–2.315 (2) Å, U—Cl 2.7207 (9) Å, and average S—O 1.540 (5) Å.  相似文献   

5.
Pt supported on alpha-Al2O3, gamma-Al2O3 and SiO2 pre-modified with cinchonidine gives over 50% ee in the hydrogenation of methyl pyruvate to methyl lactate using gas phase reactants at 40 degrees C giving the first clear observation of high enantioselection at the gas/solid interface.  相似文献   

6.
Reaction of UCl4 with calix[n]arenes (n = 4, 6 and 8) in THF or pyridine gave the mononuclear [UCl2(calix[4]arene--2H)(THF)2], bis-binuclear [U2Cl2(calix[6]arene--6H)(THF)3]2 and trinuclear [Hpy]6[U3Cl11(calix[8]arene--7H)] complexes, respectively, which are the first U(IV) complexes of O-unsubstituted calixarenes.  相似文献   

7.
In the course of comparing the reaction chemistry of (C5Me5)3U, 1, and its slightly less crowded analogue (C5Me4H)3U, 2, new syntheses of UI3, (C5Me4H)3U, (C5Me4H)3UCl, 3, and (C5Me5)3UCl, 4, have been developed. Additionally, (C5Me4H)3UI, 5, and (C5Me4H)2UCl2, 6, have been identified for the first time. A facile synthesis of unsolvated UI3 is reported that proceeds in high yield with inexpensive equipment from iodine and hot uranium turnings. Both UI3 and UI3(THF)4 react with KC5Me4H in toluene to make unsolvated (C5Me4H)3U in higher yield than in previous reports that involve reduction of tetravalent (C5Me4H)3UCl, 3. A more atom-efficient synthesis of complex 3 is also reported that proceeds from reduction of t-BuCl, PhCl, or HgCl2 by 2. Similarly, (C5Me4H)3U reacts with PhI or HgI2 to generate (C5Me4H)3UI. These studies also provided a basis to improve the synthesis of (C5Me5)3UCl from 1 by employing t-BuCl or HgCl2 as the halide source. Like (C5Me5)3UCl, the (C5Me4H)3UCl complex reacts with HgCl2 to form (C5Me4H)2 and (C5Me4H)2UCl2, 6, but unlike (C5Me5)3UX (X = Cl or I), the less substituted (C5Me4H)3UX complexes do not reduce t-BuCl or PhX. The synthesis of 6 from (C5Me4H)MgCl x THF and UCl4 is also included.  相似文献   

8.
Mesoporous and nonporous SiO(2) and Al(2)O(3) adsorbents were reacted with the fluoroquinolone carboxylic acid ofloxacin over a range of pH values (2-10) and initial concentrations (0.03-8 mM) to investigate the effects of adsorbent type and intraparticle mesopores on adsorption/desorption. Maximum ofloxacin adsorption to SiO(2) surfaces occurs slightly below the pK(a2) (pH 8.28) of the antibiotic and sorption diminishes rapidly at pH>pK(a2). For Al(2)O(3), maximum sorption is observed at pH values slightly higher than the adsorbent's point of zero net charge (p.z.n.c.) and less than midway between the pK(a) values of ofloxacin. The effects of pH on adsorption and ATR-FTIR spectra suggest that the zwitterionic compound adsorbs to SiO(2) solids through the protonated N(4) in the piperazinyl group and, possibly, a cation bridge; whereas the antibiotic sorbs to Al(2)O(3) solids through the ketone and carboxylate functional groups via a ligand exchange mechanism. Sorption edge and isotherm experiments show that ofloxacin exhibits a higher affinity for mesoporous SiO(2) and nonporous Al(2)O(3), relative to their counterparts. It is hypothesized that decreased ofloxacin sorption to mesoporous Al(2)O(3) occurs due to electrostatic repulsion within pore confines. In contrast, it appears that the environment within SiO(2) mesopores promotes sorption by inducing formation of ofloxacin-Ca complexes, thus increasing electrostatic attraction to SiO(2) surfaces.  相似文献   

9.
In situ time-resolved Fourier transform infrared (FTIR) and microprobe Raman spectroscopies were used to characterize the reaction mechanisms of the partial oxidation of methane to syngas over SiO(2)- and gamma-Al(2)O(3)-supported rhodium and ruthenium catalysts. The interaction of both pure methane and a methane/oxygen mixture at a stoichiometric feed ratio with an oxygen-rich catalyst surface led to the formation of CO2 and H(2)O as the primary products. For the H(2)-pretreated samples, the reaction mechanisms with the catalysts differ. Only Rh/SiO(2) is capable of catalyzing the direct oxidation of methane to syngas, while syngas formation over Rh/gamma-Al(2)O(3), Ru/SiO(2), and Ru/gamma-Al(2)O(3) can be achieved mainly via a combustion-reforming scheme. The significant difference in the mechanisms for partial oxidation of methane to syngas over the catalysts can be correlated to the differences in the concentration of oxygen species (O(2-)) on the catalyst surface during the reaction, mainly due to the difference in the nature of the metals and supports.  相似文献   

10.
The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.  相似文献   

11.
The supported clusters Pt-Ru/gamma-Al2O3 were prepared by adsorption of the bimetallic precursor Pt3Ru6(CO)21(mu3-H)(mu-H)3 from CH2Cl2 solution onto gamma-Al2O3 followed by decarbonylation in He at 300 degrees C. The resultant supported clusters were characterized by infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies and as catalysts for ethylene hydrogenation and n-butane hydrogenolysis. After adsorption, the nu(CO) peaks characterizing the precursor shifted to lower wavenumbers, and some of the hydroxyl bands of the support disappeared or changed, indicating that the CO ligands of the precursor interacted with support hydroxyl groups. The EXAFS results show that the metal core of the precursor remained essentially unchanged upon adsorption, but there were distortions of the metal core indicated by changes in the metal-metal distances. After decarbonylation of the supported clusters, the EXAFS data indicated that Pt and Ru atoms interacted with support oxygen atoms and that about half of the Pt-Ru bonds were maintained, with the composition of the metal frame remaining almost unchanged. The decarbonylated supported bimetallic clusters reported here are the first having essentially the same metal core composition as that of a precursor metal carbonyl, and they appear to be the best-defined supported bimetallic clusters. The material was found to be an active catalyst for ethylene hydrogenation and n-butane hydrogenolysis under conditions mild enough to prevent substantial cluster disruption.  相似文献   

12.
Carbon-modified alumina-supported copper oxide catalysts have been investigated. The samples have been prepared by modified incipient techniques. The gamma-Al(2)O(3)-supported carbon phase permits sufficient modification of the chemical nature of the support surface in the region of low carbon contents without changing the specific surface area and the mesoporous character of the samples as compared to those of initial gamma-Al(2)O(3). In addition, the surface oxygen groups of the carbon phase, similar to the hydroxyl groups of the alumina surface, affect the formation and type of copper oxide phase. It has been established that the catalysts investigated have high activity in the reduction of NO with CO, the highest activity belonging to the Cu17AC/AL catalyst, which contains the largest amount of carbon. This sample is also active with respect to the direct decomposition of NO.  相似文献   

13.
The equilibrium parameters for the adsorption of Mo(VI) on gamma-Al(2)O(3) and of Co(II) and Pt(IV) on MoO(3)/gamma-Al(2)O(3) were determined. The adsorption isotherms were performed from aqueous solutions of the corresponding precursors on two different alumina supports. According to the classification given by Giles, L-type-shaped, subgroup 2, adsorption curves were found for the system Mo on gamma-Al(2)O(3), L-type, subgroup 1, for the Pt on MoO(3)/gamma-Al(2)O(3), and S-type for Co on the MoO(3)/gamma-Al(2)O(3) system. Numerical calculations were carried out for all the isotherms to find the equilibrium parameters. These constants are being used to model the development of Pt, Co, and Mo profiles on MoO(3)/gamma-Al(2)O(3) or gamma-Al(2)O(3) extrudates, respectively, which belong to the new generation of noble-metal-MoO(3)/gamma-Al(2)O(3)-supported catalysts to be used in oil-refining processes. Copyright 2001 Academic Press.  相似文献   

14.
Novel highly active FSM-16 supported molybdenum catalyst for hydrotreatment   总被引:1,自引:0,他引:1  
FSM-16 (Folded Sheet Silica) supported catalysts could accommodate 12 wt% Mo (18% MoO(3)) as a monolayer with higher dispersion than any other silica support; these catalysts showed outstanding HDS and HYD activities compared to gamma-Al(2)O(3), amorphous silica, and other mesoporous silica supported catalysts.  相似文献   

15.
In the course of structurally characterizing previously reported complexes based on the 1,2-bis(dimethylphosphino)ethane)) (dmpe) ligand ([(dmpe)(2)UCl(4)] (1) and [(dmpe)(2)UMe(4)] (2)), we find that adjusting the U/dmpe ratio leads to an unprecedented species. Whereas the use of two or three equivalents of dmpe relative to UCl(4) produces 1 as a blue-green solid, the use of a 1:1 dmpe/UCl(4) stoichiometry yields [(dmpe)(4)U(4)Cl(16)]·2CH(2)Cl(2)·(3·2CH(2)Cl(2)) as a green solid. In turn, 3 is used to prepare a mixed-chelating ligand complex featuring the bidentate ligand 4,4'-dimethyl-2,2'-bipyridine (dmbpy), [(dmpe)(dmbpy)UCl(4)] (4). The measured magnetic susceptibilities for 1-4 trend toward nonmagnetic ground states at low temperatures.  相似文献   

16.
A rigid NSN-donor proligand, 4,5-bis(2,6-diisopropylanilino)-2,7-di-tert-butyl-9,9-dimethylthioxanthene (H(2)[TXA(2)], 1) was prepared by palladium-catalyzed coupling of 2,6-diisopropylaniline with 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylthioxanthene. Deprotonation of 1 using (n)BuLi provided Li(2)(DME)(2)[TXA(2)] (2), and subsequent reaction with UCl(4) afforded [Li(DME)(3)][(TXA(2))UCl(3)] (4). The analogous NON-donor ligated complex [(XA(2))UCl(3)K(DME)(3)] [3; XA(2) = 4,5-bis(2,6-diisopropylanilino)-2,7-di-tert-butyl-9,9-dimethylxanthene] was prepared by the reaction of K(2)(DME)(x)[XA(2)] with UCl(4). A cyclic voltammogram (CV) of 3 in THF/[NBu(4)][B(C(6)F(5))(4)] at 200 mV s(-1) showed an irreversible reduction to uranium(III) at E(pc) = -2.46 V versus FeCp(2)(0/+1), followed by a product wave at E(1/2) = -1.83 V. Complex 4 also underwent irreversible reduction to uranium(iii) [E(pc) = -2.56 V], resulting in an irreversible product peak at E(pa) = -1.83 V. One-electron reduction of complexes 3 and 4 using K(naphthalenide) under an argon atmosphere in DME yielded 6-coordinate [(XA(2))UCl(DME)] (5) and the thermally unstable 7-coordinate [(TXA(2))U(DME)Cl(2)Li(DME)(2)] (6), respectively. The U-S distances in 4 and 6 are uncommonly short, the C-S-U angles are unusually acute, and the thioxanthene backbone of the TXA(2) ligand is significantly bent. By contrast, the xanthene backbone in XA(2) complexes 3 and 5 is planar. However, κ(3)-coordination and an approximately meridional arrangement of the ancillary ligand donor atoms is maintained in all complexes. DFT and Atoms in Molecules (AIM) calculations were carried out on 3, 4, 5, 6, [(XA(2))UCl(3)](-) (3B), [(TXA(2))UCl(2)(DME)](-) (6B) and [(TXA(2))UCl(DME)] (6C) to probe the extent of covalency in U-SAr(2) bonding relative to U-OAr(2) bonding.  相似文献   

17.
We report attempts to prepare uranyl(VI)- and uranium(VI) carbenes utilizing deprotonation and oxidation strategies. Treatment of the uranyl(VI)-methanide complex [(BIPMH)UO(2)Cl(THF)] [1, BIPMH = HC(PPh(2)NSiMe(3))(2)] with benzyl-sodium did not afford a uranyl(VI)-carbene via deprotonation. Instead, one-electron reduction and isolation of di- and trinuclear [UO(2)(BIPMH)(μ-Cl)UO(μ-O){BIPMH}] (2) and [UO(μ-O)(BIPMH)(μ(3)-Cl){UO(μ-O)(BIPMH)}(2)] (3), respectively, with concomitant elimination of dibenzyl, was observed. Complexes 2 and 3 represent the first examples of organometallic uranyl(V), and 3 is notable for exhibiting rare cation-cation interactions between uranyl(VI) and uranyl(V) groups. In contrast, two-electron oxidation of the uranium(IV)-carbene [(BIPM)UCl(3)Li(THF)(2)] (4) by 4-morpholine N-oxide afforded the first uranium(VI)-carbene [(BIPM)UOCl(2)] (6). Complex 6 exhibits a trans-CUO linkage that represents a [R(2)C═U═O](2+) analogue of the uranyl ion. Notably, treatment of 4 with other oxidants such as Me(3)NO, C(5)H(5)NO, and TEMPO afforded 1 as the only isolable product. Computational studies of 4, the uranium(V)-carbene [(BIPM)UCl(2)I] (5), and 6 reveal polarized covalent U═C double bonds in each case whose nature is significantly affected by the oxidation state of uranium. Natural Bond Order analyses indicate that upon oxidation from uranium(IV) to (V) to (VI) the uranium contribution to the U═C σ-bond can increase from ca. 18 to 32% and within this component the orbital composition is dominated by 5f character. For the corresponding U═C π-components, the uranium contribution increases from ca. 18 to 26% but then decreases to ca. 24% and is again dominated by 5f contributions. The calculations suggest that as a function of increasing oxidation state of uranium the radial contraction of the valence 5f and 6d orbitals of uranium may outweigh the increased polarizing power of uranium in 6 compared to 5.  相似文献   

18.
采用表面改性法制备了负载型Sn2(OMe)2Cl2/SiO2双核桥联配合物催化剂,用IR,TPD和微量反应技术研究了催化剂的表面结构、化学吸附性能和反应活性.结果表明,双核桥联配合物Sn2(OMe)2Cl2以O(Me)为桥,Cl为配体,并以Sn-O-Si形式键合到SiO2表面上;CO2与催化剂表面的金属离子Sn4+和桥基配体OMe的O2-形成桥式和甲氧碳酸酯基两种吸附态,CH3OH与催化剂表面的金属离子Sn4+仅形成一种分子吸附态;在413K以下,CO2和CH3OH在Sn2(OMe)2Cl2/SiO2催化剂表面上以近100%的选择性生成碳酸二甲酯;CO2在催化剂表面形成的甲氧碳酸酯基吸附态是生成DMC的关键物种,其与在同一活性中心的分子吸附态甲醇的反应决定了催化剂的活性和产物选择性.  相似文献   

19.
Addition of 2 equiv of I2 to a stirring suspension of UH3 in Et2O results in vigorous gas evolution and the formation of UI4(OEt2)2 (1), which can be isolated in good yields as an air- and moisture-sensitive brick-red powder. Addition of 3 equiv of AgBr to UH3 in DME produces UBr3(DME)2 (2), while addition of 4 equiv of AgX to UH3 in DME-CH2Cl2 provides UX4(DME)2 (X = Br, 3; Cl, 4). Similarly, the reaction of 4 equiv of AgOTf with UH3 in neat DME generates U(OTf)4(DME)2 (5). Each of these reactions proceeds with the evolution of hydrogen. Complex can also be generated by reaction of 4 equiv of Me3SiI with UCl4 in Et2O. All complexes were fully characterized, including analysis by X-ray crystallography.  相似文献   

20.
The redox behavior of tricyclopentadienyl- and phospholyluranium(IV) chloride complexes L(3)UCl with L = C(5)H(5) (Cp), C(5)H(4)Me (MeCp), C(5)H(4)SiMe(3) (TMSCp), C(5)H(4)(t)Bu ((t)BuCp), C(5)Me(5) (Cp*), and C(4)Me(4)P (tmp), has been investigated using relativistic density functional theory calculations, with the solvent being taken into account using the conductor-like screening model. A very good linear correlation (r(2) = 0.99) has been obtained between the computed electron affinities of the L(3)UCl complexes and the experimental half-wave reduction potentials E(1/2) related to the U(IV)/U(III) redox systems. From a computational point of view, our study confirms the crucial importance of spin-orbit coupling and solvent corrections and the use of an extended basis set in order to achieve the best experiment-theory agreement. Considering oxidation of the uranium(IV) complexes, the instability of the uranium(V) derivatives [L(3)UCl](+) is revealed, in agreement with experimental electrochemical findings. The driving roles of both the electron-donating ability of the L ligand and the U 5f orbitals on the redox properties of the complexes are brought to light. Interestingly, we found and explained the excellent correlation between variations of the uranium Hirschfeld charges following U(IV)/U(III) electron capture and E(1/2). In addition, this work allowed one to estimate theoretically the half-wave reduction potential of [Cp*(3)UCl].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号