首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
New scientific program is proposed at Joint Institute for Nuclear Research (JINR) in Dubna aimed a study of hot and dense baryonic matter in the wide energy region from 2 GeV/amu to √s NN = 11 GeV, and investigation of nucleon spin structure with polarized protons and deuterons maximum energy in the c.m. 27 GeV (for protons). To realize this program the development of JINR accelerator facility in high energy physics has started. This facility is based on the existing superconducting synchrotron—Nuclotron. The program foresees both experiments at the beams extracted from the Nuclotron, and construction of ion collider—the Nuclotron-based Ion Collider fAcility (NICA).  相似文献   

3.
The Multi-Purpose Detector (MPD) is designed to study heavy-ion collisions at the Nuclotron-based heavy Ion Collider fAcility (NICA) at JINR, Dubna. Its main components located inside a superconducting solenoid are a tracking system composed of a silicon microstrip vertex detector followed by a large volume time-projection chamber, a time-of-flight system for particle identification and a barrel electromagnetic calorimeter. A zero degree hadron calorimeter is designed specifically to measure the energy of spectators. In this paper, all parts of the apparatus are described and their tracking and particle identification parameters are discussed in some detail.  相似文献   

4.
The NICA cryogenics will be based on the modernized liquid helium plant that was b uilt in the early 90’s for the superconducting synchrotron known as the Nuclotron. The main goals of the modernization are: increasing of the total refrigerator capacity from 4000 W to 8000 W at 4.5 K, making a new distribution system of liquid helium, and ensuring the shortest possible cool down time. These goals will be achieved by means of an additional 1000 l/hour helium liquefier and “satellite” refrigerators located near the accelerator rings. This report describes the design choices of the NICA, demonstrates helium flow diagrams with major new components and briefly informs of the liquid nitrogen system that will be used for shield cooling at 77 K and at the first stage of cooling down of three accelerator rings with the total length of about 1 km and “cold” mass of 290 tons.  相似文献   

5.
6.
7.
We discuss constraints for the equation of state of hybrid-star matter which can be obtained from next-generation heavy-ion collisions at FAIR and NICA. Particular emphasis is on the planned NICA facility at JINR (Dubna) which will provide fixed target and collider experiments just in the relevant energy ranges.  相似文献   

8.
One of the basic facilities at the Joint Institute for Nuclear Research (JINR) in Dubna is the 6 A GeV Nuclotron, which has replaced the old weak focusing 10-GeV proton accelerator Synchrophasotron. The first relativistic nuclear beams with the energy of 4.2 A GeV were obtained at the Synchrophasotron in 1971. Since that time, relativistic nuclear physics has been one of the main directions of the JINR research program. In the coming years, the new JINR flagship program assumes the experimental study of hot and dense strongly interacting QCD matter at the new JINR facility. This goal is proposed to be reached by (i) development of the existing Nuclotron accelerator facility as a basis for generation of intense beams over atomic mass range from protons to uranium and light polarized ions, (ii) design and construction of the Nuclotron-based heavy Ion Collider fAcility (NICA) with the maximum nucleon-nucleon center-of-mass collision energy of √s NN = 9 GeV and averaged luminosity 1027 cm−2 s−1, and (iii) design and construction of the Multipurpose Particle Detector (MPD) at intersecting beams. Realization of the project will lead to unique conditions for research activity of the world community. The NICA energy region is of major interest because the highest nuclear (baryonic) density under laboratory conditions can be reached there. Generation of intense polarized light nuclear beams aimed at investigation of polarization phenomena at the Nuclotron is foreseen. The text was submitted by the author in English.  相似文献   

9.
Physics aspects of a JINR project to reach the planned 5 A GeV energy for the Au and U beams and to increase the bombarding energy up to 10 AGeV are discussed. The project aims to search for a possible formation of a strongly interacting mixed quark-hadron phase. The relevant problems are exemplified. The need for scanning heavy-ion interactions in bombarding energy, collision centrality, and isospin asymmetry is emphasized. The text was submitted by the authors in English.  相似文献   

10.
11.
A physical program is formulated for new facilities opening in Dubna for the acceleration of heavy ions with an energy up to 5A GeV. The text was submitted by the authors in English.  相似文献   

12.
The main task of the NICA/MPD physics program is a study of the properties of nuclear matter under extreme conditions achieved in collisions of heavy ions. These properties can reveal themselves through different probes, the most promising among those being the lepton-antilepton pairs and strange hadrons. In this paper the MPD performance for measuring the electron-positron pairs and strange particles (Λ, Ξ and Ω hyperons and their antiparticles \(\overline \Lambda \), \({\overline \Xi ^ + }\) and \({\overline \Omega ^ + }\) as well as hypernuclei 3 Λ Λ) in central Au + Au collisions at NICA energies is presented.  相似文献   

13.
A short review of spin physics program at JINR is presented. The proposals on spin program at the NICA collider are discussed. The main purpose of this program is to study the nucleon spin structure and other phenomena with polarized proton and deuteron beams.  相似文献   

14.
Physics of Particles and Nuclei Letters - A new accelerator complex with new beam lines for applied research is being constructed at the Joint Institute for Nuclear Research (Dubna, Russia) as part...  相似文献   

15.
On the basis of low-energy QCD theorems, the bulk viscosity ζ(T, µ, H) is expressed in terms of basic thermodynamic quantities that characterizes quark-gluon matter at finite temperature and a finite baryon density in a magnetic field. Various limiting cases are considered.  相似文献   

16.
17.
The Dzhelepov Laboratory of Nuclear Problems’ activity is aimed at developing three directions in radiation medicine: 3D conformal proton therapy, accelerator techniques for proton and carbon treatment of tumors, and new types of detector systems for spectrometric computed tomography (CT) and positron emission tomography (PET). JINR and IBA have developed and constructed the medical proton cyclotron C235-V3. At present, all basic cyclotron systems have been built. We plan to assemble this cyclotron at JINR in 2011 and perform tests with the extracted proton beam in 2012. A superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. This cyclotron will be used for radiotherapy with proton, helium and carbon ions. The 12C6+ and 4He2+ ions will be accelerated to an energy of 400 MeV/amu, the protons will be extracted at the energy 265 MeV. The construction of the C400 cyclotron was started in 2010 within the framework of the Archarde project (France). Development of spectrometric CT tomographs may allow one to determine the chemical composition of a substance together with the density, measured using traditional CT. This may advance modern diagnostic methods significantly. JINR develops fundamentally new pixel detector systems for spectrometric CT. The time-of-flight (TOF) system installed in the positron emission tomograph (PET) permits essential reduction in the detector noise from occasional events of different positron annihilations. The micropixel avalanche photodiodes (MAPDs) developed at JINR allow a factor of 1.5 reduction in the resolution time for the PET TOF system and suppression of the noise level as compared to commercial PET. The development of a combined PET/MRI is of considerable medical interest, but it cannot be made with the existing PET tomographs based on detectors of compact photomultipliers due to strong alternating magnetic field of MRI. Change-over to detectors of micropixel avalanche photodiodes permits making a combined PET/MRI.  相似文献   

18.
基于一个描述夸克胶子火柱演化的相对论流体力学模型,研究了夸克相、强子相互作用以及非热过程(DrellYan对、粲强子衰变)的中等质量双轻子的产生.发现由于相边对夸克胶子物质演化的影响和RHIC能量核碰撞产生的夸克胶子物质具有高的初始温度,夸克相对双轻子的贡献显著增强,比那些来自强子相互作用的贡献重要,甚至能与来自非热的贡献比较.表明中等质量双轻子的增强是一个在核碰撞中产生了夸克胶子物质的可能信号. 关键词: 夸克-胶子物质 双轻子增强 相对论流体力学模型  相似文献   

19.
A computer infrastructure constructed at JINR’s Laboratory of Particle Physics, purposed for the effective participation of JINR’s experts in ongoing experiments in particle and nuclear physics is presented. The principles of the design and construction of the PC farm are outlined, and the computer and information services used for effective application of distributed computer and information resources are described.  相似文献   

20.
Different methods for diagnostics of ultrashort electron bunches are developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects and JINR participation in the ILC project. The main peculiarity of these accelerator complexes is related to formation of ultrashort electron bunches with r.m.s. length 20–300 μm. Novel diagnostics is required to provide femtoscaie time resolution in the modem FEL like FLASH and future XFEL and ILC projects. Photon diagnostics developed at JINR-DESY collaboration for ultrashort bunches is based on calorimetric measurements and detection of undulator radiation. The MCP-based radiation detectors are effectively used at FLASH for pulse energy measurements. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. Two-color lasing in pump-probe experiments permits one to investigate dynamics of atomic and molecular systems with time resolution of 100–500 fs. A special magnetic spectrometer is planning to be used at ILC for measurements of average electron energy in each bunch. The first test spectrometer measurements were performed within the JINR-DESY-SLAC collaboration. A special synchrotron radiation detector applied for measurement of bunch average electron energy was constructed at JINR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号