首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present an experimental and theoretical investigation of a variant of electroconvection using an unusual nematic liquid crystal in an isotropic configuration (homeotropic alignment). The significance of the system is a direct transition to the convecting state due to the negative conductivity anisotropy and positive dielectric anisotropy. We observe at onset rolls or squares depending on the frequency and amplitude of the applied ac voltage with a strong signature of the zigzag instability. Good agreement with calculations based on the underlying hydrodynamic theory is found. We also construct an extended Swift-Hohenberg model which allows us to capture complex patterns like squares with a quasiperiodic modulation.  相似文献   

2.
Swiss rolls are one instance of metamaterials, and can be described as an effective medium with a complex, anisotropic magnetic permeability. It has been shown that bundles of Swiss rolls can guide the magnetic flux in magnetic resonance measurements and increase the coupling between the nuclear spins and the receiver coil. Here, we investigate, with a numerical model, whether Swiss rolls can boost the detected signal in a NMR experiment, where the rolls could provide a low-reluctance return path for the magnetic flux when shaped in a yoke encircling the sample. The system consisting of the nuclear spin, the rolls and the receiver coil is analyzed with the method of finite differences in time domain (FDTD). The results show that small gains in the received signal are possible, but only if the losses (resistive and dielectric) in the rolls are reduced by over one order of magnitude from their present value in state-of-the-art materials. This situation arises because of the energy dissipation in the rolls and the mode splitting caused by the coupling between the rolls and the resonant coil.  相似文献   

3.
Frank J. Owens 《Molecular physics》2013,111(21-23):2441-2443
The electronic properties, band gap and ionization potential as well as the energies of the singlet and triplet states of zigzag and armchair graphene nanoribbons are calculated as a function of the number of oxygen atoms on the ribbon employing density functional theory at B3LYP/6-31G* level. The calculated band gaps indicate that both structures are semiconducting. The band gap of the armchair ribbons initially decreases followed by an increase with oxygen number. For zigzag ribbons the band gap decreases with increasing oxygen number whereas the ionization potential increases with oxygen content. In both armchair and zigzag ribbons the ionization potential shows a gradual increase with the number of oxygen atoms. Some of the oxygenated ribbons calculated have triplet ground states and have the density of states at the Fermi level for spin down greater than spin up suggesting the possibility they may be ferromagnetic semiconductors.  相似文献   

4.
Vibrational properties of graphene nanoribbons are examined with density functional based tight-binding method and non-resonant bond polarization theory. We show that the recently discovered reconstructed zigzag edge can be identified from the emergence of high-energy vibrational mode due to strong triple bonds at the edges. This mode is visible also in the Raman spectrum. Total vibrational density of states of the reconstructed zigzag edge is observed to resemble the vibrational density of states of armchair, rather than zigzag, graphene nanoribbon. Edge-related vibrational states increase in energy which corroborates increased rigidity of the reconstructed zigzag edge.  相似文献   

5.
The forced phase locking in a system of the oscillating electroconvective rolls that form in a nematic liquid crystal layer in a dc electric field is studied. As a result of the action of an additive ac electric field with a small amplitude, the system of oscillators is found to be divided into clusters, where oscillations are fully phase locked. The electroconvective rolls in neighboring clusters oscillate in antiphase and the clusters are separated by Ising walls. The phase locking is shown to be maximal at the forcing frequency that is close to the double frequency of the natural oscillations of rolls. A model is proposed to describe spatially distributed phase oscillators, and it takes into account the symmetries of a system of electroconvective rolls and external forcing. The results of numerical simulations agree well with the experimental data.  相似文献   

6.
K.S. Chan 《Physics letters. A》2018,382(7):534-539
There are two valleys in the band structure of graphene zigzag ribbons, which can be used to construct valleytronic devices. We studied the use of a T junction formed by an armchair ribbon and a zigzag ribbon to detect the valley-dependent currents in a zigzag graphene ribbon. A current flowing in a zigzag ribbon is divided by the T junction into the zigzag and armchair leads and this separation process is valley dependent. By measuring the currents in the two outgoing leads, the valley-dependent currents in the incoming lead can be determined. The method does not require superconducting or magnetic elements as in other approaches and thus will be useful in the development of valleytronic devices.  相似文献   

7.
Dependence of magnetic field generation on the rotation rate is explored by direct numerical simulation of magnetohydrodynamic convective attractors in a plane layer of conducting fluid with square periodicity cells for the Taylor number varied from zero to 2000, for which the convective fluid motion halts (other parameters of the system are fixed). We observe 5 types of hydrodynamic (amagnetic) attractors: two families of two-dimensional (i.e. depending on two spatial variables) rolls parallel to sides of periodicity boxes of different widths and parallel to the diagonal, travelling waves and three-dimensional “wavy” rolls. All types of attractors, except for one family of rolls, are capable of kinematic magnetic field generation. We have found 21 distinct nonlinear convective MHD attractors (13 steady states and 8 periodic regimes) and identified bifurcations in which they emerge. In addition, we have observed a family of periodic, two-frequency quasiperiodic and chaotic regimes, as well as an incomplete Feigenbaum period doubling sequence of bifurcations of a torus followed by a chaotic regime and subsequently by a torus with 1/3 of the cascade frequency. The system is highly symmetric. We have found two novel global bifurcations reminiscent of the SNIC bifurcation, which are only possible in the presence of symmetries. The universally accepted paradigm, whereby an increase of the rotation rate below a certain level is beneficial for magnetic field generation, while a further increase inhibits it (and halts the motion of fluid on continuing the increase), remains unaltered, but we demonstrate that this “large-scale” picture lacks many significant details.  相似文献   

8.
Structural stabilities and electronic structures of Ti atomic chains   总被引:1,自引:0,他引:1  
The present first principles density-functional calculations reveal that titanium can form one-dimensional chains in linear, dimer, zigzag and ladder structures. The most stable structure is a zigzag chain with a unit cell rather close to an equilateral triangular geometry with four nearest neighbors. Two intermediary chains between the linear and zigzag ones have the ladder and dimer structure, respectively. Titanium can also form a metastable zigzag structure with an obtuse bond angle. It is important and interesting to find that during the elongation of the zigzag chain, the bond angle will shift abruptly from a sharp angle to an obtuse one at a critical point, and the bonding character also transforms from mainly metallic to more covalent. This is the first time that such a structural transition is discussed in the atomic chain system. The electronic structures of these one-dimensional titanium chains are also discussed.  相似文献   

9.
Nishigaki and Nakamura have observed zigzag chains on the central (011) face of tungsten after field evaporation at T #62; 140 K. In this paper, a study of the formation, disappearance and structure of such chains is described. Tungsten tips of small radii down to 60 Å were used. Chains of 3 to 9 spots, that are clearly visible, are found even at 90 K. Four different structure models of the zigzag chains are discussed, including the multibranch model proposed by the Japanese authors. The interpretation of our experimental results shows fairly clearly that the real zigzag chain structure is a special non-dense structure. It must be formed by a local displacement of the tungsten adatoms in the field. Without the field, a zigzag chain is transformed into a two-dimensional cluster of the nearest neighbour atom by a small increase in temperature. If the field is reintroduced, the cluster can revert to the initial zigzag structure. The zigzag structure is interpreted as being caused by forces of repulsion between the atom dipoles.  相似文献   

10.
In the present work, nonlocal Euler–Bernoulli beam theory is used to investigate the wave propagation in zigzag double-walled carbon nanotube (DWCNT) embedded in an elastic medium. Winkler-type foundation model is employed to simulate the interaction of the DWCNT with the surrounding elastic medium. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. It is noticed in the presented study that the equivalent Young’s modulus for zigzag DWCNT is derived using an energy-equivalent model. Influences of nonlocal effects, the chirality of zigzag DWCNT, Winkler modulus parameter, and aspect ratio on the frequency of DWCNT are analyzed and discussed. The new features of the vibration behavior of zigzag DWCNTs embedded in an elastic medium and some meaningful results in this paper are helpful for the application and the design of nanostructures in which zigzag DWCNTs act as basic elements.  相似文献   

11.
为了对比研究不同管口浸没方式下气泡的运动特性,通过可视化实验揭示了顶部、侧部和底部三种管口浸没方式下的气泡上升运动过程,得到了气泡形状、等效直径、位移、速度以及高宽比的变化规律,通过获得相邻气泡质心间垂直距离定量表征了气泡在上升过程中的紊乱程度.研究结果表明,顶部管口浸没方式下的气泡形态明显区别于侧部和底部管口浸没方式...  相似文献   

12.
We report experiments on thermally driven convection in an inclined layer of large aspect ratio in a fluid of Prandtl number sigma approximately 1. We observed a number of new nonlinear, mostly spatiotemporally chaotic, states. At small angles of inclination we found longitudinal rolls, subharmonic oscillations, Busse oscillations, undulation chaos, and crawling rolls. At larger angles, in the vicinity of the transition from buoyancy- to shear-driven instability, we observed drifting transverse rolls, localized bursts, and drifting bimodals. For angles past vertical, when heated from above, we found drifting transverse rolls and switching diamond panes.  相似文献   

13.
To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM).  相似文献   

14.
We develop the theory of electrohydrodynamic instability in nematic liquid crystals by incorporating the flexoelectric terms. Using a one-dimensional linear analysis of the problem for an applied DC field, we demonstrate that for the usual materials the rolls have an oblique orientation as has been found experimentally. We also provide an experimental evidence for the strong flexoelectric influence on the director profile in the rolls.  相似文献   

15.
The formation of oblique rolls in nematic liquid crystals driven by dichotomous stochastic fields is investigated in the frame of a one-dimensional linear theory including the flexoeffect, and in the frame of a threedimensional linear theory with free boundary conditions. In the first model the threshold for the stability of the first moments is calculated and the angle of the oblique rolls is determined by mode selection. It is shown that in certain parameter ranges oblique rolls have lower thresholds than normal rolls. As for deterministic excitation, with increasing flexoeffect the formation of oblique rolls is favoured. It is observed that at full strength the flexoeffect alone is able to trigger the formation of rolls. In the three-dimensional model the threshold for the stability of the first moments is calculated again and the two wave numbers which give the angle of the oblique rolls are determined by mode selection. The appearance of oblique rolls is studied for different parameters of the driving stochastic field. The results are compared with those of the one-dimensional model without the flexoeffect.  相似文献   

16.
The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum(VBM) and conduction band minimum(CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA.  相似文献   

17.
Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non-equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.  相似文献   

18.
We studied the valley dependent transport in a T junction consisting of an armchair lead and two zigzag leads. Electrons transmitted from the armchair lead to the two outgoing zigzag leads can be valley polarized. When the two outgoing leads have different widths, electrons are pushed into the wider lead and as a result, the valley polarization of the current in the narrow lead is enhanced with an oscillatory dependence on energy. The oscillation pattern is determined by the widths of the two zigzag leads. We analyzed the total local density of states of the device region of the junction and cannot find features that attribute this enhancement to quasi-bound state formation.  相似文献   

19.
We investigated theoretically in detail the size effect of spin-polarized transport in FM/Single-walled carbon nanotube/FM junctions (FM/SWCNT/FM) consisting of the achiral types of tubes: armchair tubes and zigzag tubes. The results show that the spin-polarized transport has different oscillation behaviors with the junction?s size in these two junctions. And the effect of tunnel magnetoresistance (TMR) in zigzag tube is stronger than that in armchair tubes. For all zigzag tubes when the size exceeds a limit the size effect on TMR disappears and TMR value reaches one maximum 20%. Furthermore, for each family of zigzag tubes, this limit of size increases with increasing tube?s radius. For short zigzag tubes the TMR can be negative at some special sizes. And the negative TMR value can reach −12%12% at the angle π. Finally, except for the zero angel, the obtained results show that for all zigzag tubes the extremum of TMR is at the angle π  . For all armchair tubes, the TMR value has one oscillation of small amplitude with the increase of angle and it has two extrema: the maximum at π/2π/2 and the minimum at π, respectively.  相似文献   

20.
臧华平  曹磊峰  王传珂  蒋刚  魏来  范伟  周维民  谷渝秋 《物理学报》2011,60(3):34215-034215
新近提出的光学色散元件"之"字形光栅具有优越的衍射特征,在光谱测量和分析中具有重要的应用价值.本文基于卷积定理,采用一种新的数值计算方法对应用于X射线波段的"之"字形光栅的衍射模式进行了模拟计算,并将其衍射模式与传统光栅以及正弦光栅的衍射模式进行了比对研究,结果表明:"之"字形光栅可以将高级衍射抑制到低于一级衍射四个量级的水平,具有比传统光栅优越得多的衍射模式,与理论预期结果一致.在此基础上,又分析了实际应用过程中吸收体对X射线的吸收情况给"之"字形光栅衍射模式带来的影响,最终证实了"之"字形光栅具有较强 关键词: 之字形光栅 卷积定理 衍射模式 光谱测量  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号