首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of measurements of the decay of an elastic precursor in iron at the distances from 0.13 to 10 mm and the spall strength of the samples with such thicknesses have been compared with similar data for the nanometer-scale samples. The decay has been described by a unique dependence whose differentiation gives the relationship between the initial plastic strain rate in the range from 103 to 109 s?1 and the compression stress in the elastic shock wave from 1.5 to 27.5 GPa. The dynamic breaking strength (spall strength) varies in this range of shock-wave load time from 1.5 to 20 GPa.  相似文献   

2.
The evolution of elastic-plastic shock compression waves in a VT6 titanium alloy is measured at a distance of 0.16–17 mm at room temperature and 600°C. The results of measuring the decay of an elastic precursors and the compression rate in a plastic shock wave are used to determine the temperature–rate dependences of the flow stress in the strain-rate range 103–107s–1. New data for the spall strength of the alloy at normal and elevated temperatures are obtained.  相似文献   

3.
The paper presents the results of measurements of shock-wave compression profiles of VT1-0 titanium samples after rolling and in the annealed state. In the experiments, the pressure of shock compression and distance passed by the wave before emerging to the sample surface were varied. From measurements of the elastic precursor decay and compression rate in a plastic shock wave of different amplitudes, the plastic strain and the corresponding shear stresses in the initial and subsequent stages of high-rate deformation in an elastoplastic shock wave are determined. It is found that the reduction in the dislocation density as a result of annealing reduces the hardness of the material but significantly increases its dynamic yield strengh, corresponding to the strain rate above 104 s–1. With a reduction in the strain rate, this anomalous difference in the flow stresses is leveled off.  相似文献   

4.
The results of measurements of the dynamic elastic limit and spall strength under shock-wave loading of aluminum samples AD1 of thicknesses between 0.5 and 10.0 mm at room temperature and at temperature increased up to 600°C are presented. The anomalous thermal hardening of aluminum under high strain rate has been confirmed. An analysis of the decay of precursors at temperatures of 20 and 600°C has shown that the change in the main mechanism of drag of dislocations occurs at a strain rate equal approximately to 5 × 103 s−1, which agrees with the results of measurements by the Hopkinson split bar method. The results of measurements of the spall strength in a wide range of strain rates add the previously obtained data and agree with them.  相似文献   

5.
The dynamics of the motion of the free surface of micron and submicron films under the action of a compression pulse excited in the process of femtosecond laser heating of the surface layer of a target has been investigated by femtosecond interferometric microscopy. The relation between the velocity of the shock wave and the particle velocity behind its front indicates the shock compression to 9–13 GPa is elastic in this duration range. This is also confirmed by the small (≤1 ps) time of an increase in the parameters in the shock wave. Shear stresses reached in this process are close to their estimated ultimate values for aluminum. The spall strength determined at a strain rate of 109 s−1 and a spall thickness of 250–300 nm is larger than half the ultimate strength of aluminum.  相似文献   

6.
The Hugoniot elastic limit and the spall strength of aluminum and copper samples pressed from a mixture of a metallic powder and 2–5 wt % C60 fullerene powder are measured under a shock loading pressure up to 6 GPa and a strain rate of 105 s?1 by recording and analyzing full wave profiles using a VISAR laser interferometer. It is shown that a 5% C60 fullerene addition to an initial aluminum sample leads to an increase in its Hugoniot elastic limit by an order of magnitude. Mixture copper samples with 2% fullerene also exhibit a multiple increase in the elastic limit as compared to commercial-grade copper. The elastic limits calculated from the wave profiles are 0.82–1.56 GPa for aluminum samples and 1.35–3.46 GPa for copper samples depending on the sample porosity. The spall strength of both aluminum and copper samples with fullerene additions decreases approximately threefold because of the effect of high-hardness fullerene particles, which serve as tensile stress concentrators in a material under dynamic fracture.  相似文献   

7.
The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8–1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.  相似文献   

8.
 利用一级轻气炮作为加载手段,研究了无钴合金钢在3~20 GPa压力区间的冲击响应特性。用激光干涉测速——VISAR记录了双波结构的自由面速度剖面,并利用常压下的弹性纵波速度近似替代低压冲击下的弹性先驱波速度,确定了无钴合金钢的Hugoniot关系。根据自由面速度反映的层裂信息,给出了无钴合金钢的Hugoniot弹性极限、层裂强度以及层裂片厚度等动态力学参数。  相似文献   

9.
脉冲激光作用下铝靶的层裂   总被引:1,自引:0,他引:1       下载免费PDF全文
 本文报导波长为1.06 μm脉宽(FWHM)约4 ns的强脉冲激光辐照下,铝靶发生层裂的实验结果。当入射功率密度在2.0×1011~5×1011 W/cm2范围的激光束作用下,厚度为0.1 mm、0.2 mm的靶在超临界条件下发生层裂,层裂厚度分别在(17±6) μm及(35±5) μm范围。文中使用一种简化模型对阈值条件下不同厚度的靶发生层裂时的层裂片厚度作了近似估算,并与已有的实验结果较好地符合。  相似文献   

10.
The evolution of a shock compression wave in SiC ceramic is measured for determining the possible contribution of relaxation processes to the high-rate straining. No appreciable decay of the elastic precursor and other features of stress relaxation are revealed when the sample thickness changes from 0.5 to 8.3 mm, and the evolution of the compression wave corresponds to a simple wave. The measured values of the Hugoniot elastic limit (σHEL = 8.72 ± 0.17 GPa) and spall strength (σsp = 0.50–0.62 GPa) with allowance for the density of the ceramic are in conformity with the available data.  相似文献   

11.
The mechanism of formation of a two-wave structure of plastic relaxation waves at shock wave stresses σ > 1 GPa (plastic strain rates $\dot \varepsilon $ > 106 s?1) has been theoretically considered using the dislocation kinetic equations and relationships. It has been shown that, under intense shock loading, two plastic relaxation waves are generated in the crystal. Initially, there arises the first wave (in the traditional terminology, it is an elastic precursor) associated with the generation of geometrically necessary dislocations at the boundary between the compressed and uncompressed parts of the crystal. Then, there arises the second wave due to the dislocation multiplication on geometrically necessary dislocations of the first wave in the form of forest dislocations. The dependences of the stresses on the plastic strain rate σ ~ $\dot \varepsilon ^{1/4} $ in the first wave and σ ~ $\dot \varepsilon ^{2/5} $ in the second wave, as well as the dependences of the stresses on the thickness of the target D, i.e., σ ~ D ?1/3 and σ ~ D ?2/3, respectively, have been determined by solving the relaxation equations. The obtained relationships have been confirmed by the experimental data available in the literature.  相似文献   

12.
The separation of a shock wave into an elastic precursor and a plastic wave is a characteristic phenomenon occurring only in solid media. The existence of the elastic shock wave at pressures p ≈ 10 GPa, which is one or two orders of magnitude higher than the dynamic elastic limit, has been detected in recent numerical calculations and a femtosecond laser experiment. The plastic shock wave has no time to be formed in these ultrashort waves at p ≈ 10 GPa. The processes of the formation and propagation of the elastic and plastic waves in aluminum at higher pressures obtained by means of femtosecond lasers have been analyzed in this work. It has been found that the elastic precursor survives even under the conditions when the pressure behind the plastic front reaches a giant value p ∼ 1 Mbar at which the melting of the metal begins. It has been shown that superelasticity should be taken into account to correctly interpret the preceding laser experiments.  相似文献   

13.
Shock-wave phenomena generated by femtosecond laser pulses in submicron iron film samples have been studied by the interferometric method with the application of frequency-modulated diagnostics in the picosecond time range. The splitting of the shock wave into the elastic and plastic waves with a compression stress of up to 27.5 GPa behind the front of an elastic precursor has been detected. The corresponding maximum shear stress reaches 7.9 GPa, which is even somewhat higher than the calculated ideal shear strength. The measured spall strengths reach 20.3 GPa, which is also comparable to the calculated values of the ideal tensile strength.  相似文献   

14.
The plastic deformation and the onset of fracture of single-crystal metals under shock-wave loading have been studied using aluminum as an example by the molecular dynamics method. The mechanisms of plastic deformation under compression in a shock wave and under tension in rarefaction waves have been investigated. The influence of the defect structure formed in the compression wave on the spall strength and the fracture mechanism has been analyzed. The dependence of the spall strength on the strain rate has been obtained.  相似文献   

15.
Full wave profiles are used to determine the Hugoniot elastic limit and the spall strength of armco iron samples with an as-received structure and the samples recovered after preliminary loading by plane shock waves with an amplitude of 8, 17, and 35 GPa. The measurements are performed at a shock compression pressure below and above the polymorphic a–e transition pressure. Metallographic analysis of the structure of armco iron shows that a developed twinned structure forms inside grains in the samples subjected to preliminary compression and recovered and that the twin concentration and size increase with the shock compression pressure. The spall strength of armco iron under shock loading below the phase transition pressure increases by approximately 10% due to its preliminary deformation twinning at the maximum shock compression pressure. The spallation of samples with various structures at a shock compression pressure above the phase transition proceeds at almost the same tensile stresses. The polymorphic transition in armco iron weakly affects its strength characteristics.  相似文献   

16.
Al-Si alloy samples with a silicon content from 8 to 15 wt % were obtained by the Stepanov method at solidification rates of 102 and 103 µm s?1. Tensile and bending strain diagrams were studied at a strain rate of about 10?4 s?1. The microstructure of the samples was investigated. It was found that the silicon content in the eutectic structure of the alloy grows as the solidification rate increases. The yield stress and the tensile strength increase as the silicon content grows.  相似文献   

17.
This paper presents the results of investigations of the dynamic spall fracture of bulk (2–6 mm) copper targets under the action of a relativistic high-current electron beam (1.3 MeV electron energy, 50 ns pulse duration, ∼1010 W/cm2 power density) generated by the SINUS-7 accelerator. By numerical simulation with the use of the BETAIN1 software package it has been found that the amplitude of the stress wave formed is 6 GPa and the deformation rate is 5·105 s−1. As established experimentally, there is a practically linear relationship between the thickness of the target and the thickness of the spalled layer. Comparison of the experimental data and the simulation results has shown that the spall strength of copper under the given conditions is 1.3 GPa, which is in good agreement with the data available in the literature. Analysis performed with the use of fractographic teqniques has revealed that in the case of recrystallized copper the size of the spall pits formed inside the grains is four times greater than the size of the pits formed on the grain boundaries. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 69–74, July, 2006.  相似文献   

18.
ABSTRACT

The thermal compression behaviour of Al–Zn–Mg alloy was studied on a thermal simulator machine at the temperature range of 380–540°C and strain rate range of 0.01–10?s?1. The constitutive equation and 3D processing map of the alloys were established. The microstructure characteristics of the alloy were studied by metallographic observation, electron back-scatter diffraction (EBSD) analysis and transmission electron microscopy (TEM) microstructure analysis. The results show that the peak stress of high-temperature deformation of alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The dynamic recovery of the alloy occurs at the temperature range of 380–460°C and the strain rate range of 0.01–0.1?s?1. The dynamic recrystallization of the alloy occurs at the temperature range of 460–500°C and the strain rate range of 0.01–0.1?s?1. The alloy maintains fine and uniform recrystallized grains at a temperature range of 460–480°C and a strain rate range of 0.01–0.1?s?1, which is suitable for hot working.  相似文献   

19.
A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is ~1 mm, its electron density is more than 2 × 1019 cm–3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm–3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3–5 times and almost merges together with the leading edge of the shock wave.  相似文献   

20.
We report on the stress–density and rate-dependent response for Ta, ramp compressed to 330?GPa with strain rates up to 5?×?108?s?1. We employ temporally shaped laser drives to compress Ta stepped foils over several to tens of nanoseconds. Lagrangian wave-profile analysis reveals a stress–density relationship which falls below the Hugoniot, above the hydrostat, and is consistent with ramp-compression experiments at lower strain rates. We also report on the peak elastic stress prior to plastic deformation as a function of strain rate for laser-driven ramp and shock-compression data spanning the 1–50?×?107?s?1 strain-rate range. When combined with previously published lower strain data (101–107?s?1), we observe a change in rate dependence, suggesting a transition from thermally activated to defect-limited (phonon drag) dislocation motion occurring at a strain rate of about 105?s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号