首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature and magnetic field dependences of the static magnetization of the polycrystalline rare-earth cobaltites GdCoO3 and SmCoO3 have been measured. It is shown that, below room temperature, the magnetization of both compounds derives primarily from the rare-earth ion paramagnetism. The GdCoO3 and SmCoO3 compounds have been found to differ substantially in magnetic behavior, which can be traced to differences in their electronic shell structures. The magnetic behavior of GdCoO3 is close to that of an array of free Gd3+ ions, whereas in SmCoO3 the deviation from the free-ion properties is very large because of the Sm3+ ground state being crystal-field split. Van Vleck magnetic susceptibility measurements of SmCoO3 suggest that the splitting is ~10 K.  相似文献   

2.
Changes in the spin state of Co3+ ions in LaCoO3 and GdCoO3 compounds are studied through the use of the temperature dependence of the magnetic susceptibility and the modified crystal field theory. It is shown that the spin subsystem of Co3+ ions in LaCoO3 and GdCoO3 undergoes the spin-crossover type transition between the high-spin (S = 2) and low-spin (S = 0) states without any contribution of the intermediate-spin state (S = 1).  相似文献   

3.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

4.
A coordinated investigation of the magnetic and electrical properties of polycrystalline cobalt oxide compounds CdCoO3, Gd0.9Ba0.1CoO3, and Gd0.9Sr0.1CoO3 is carried out. Undoped GdCoO3 reveals a low conductivity; a magnetic moment of 7.4 μB per molecule, which is less than the theoretical value for the Gd3+ ion; and an asymptotic Curie temperature of ?6 K. Doping GdCoO3 with barium and strontium to substitution of 10 at. % Gd brings about an increase in the conductivity and magnetic transitions at T = 300 K for Gd0.9Ba0.1CoO3 and T = 170 K for Gd0.9Sr0.1CoO3. The magnetization anomalies imply the formation of magnetic clusters. The behavior of the electrical conductivity at high temperatures suggests a variable activation energy. At low temperatures, Mott hopping conduction sets in.  相似文献   

5.
The spontaneous magnetization and principal magnetic susceptibilities of TbFeO3 were measured from 4.2 to 300 K. The weak ferromagnetic moment is along the c crystallographic axis in the entire temperature range. The field dependence of the magnetization at 4.2 K was also studied. The magnetic behavior is interpreted in terms of an interaction between the ordered Fe3+ spin system and the electrons occupying the lowest lying “accidental” doublet of the Tb3+ ions. The FeTb interaction and the Tb3+ Van Vl eck susceptibility along the c axis play significant roles in determining the magnetic configuration of the Fe3+ spin system. No indication was found that the TbTb interaction plays a significant role in the magnetic behavior of TbFeO3 at temperature above 4.2 K.  相似文献   

6.
The amorphous alloy Ce75.5Co24.5 prepared by melt spinning has been studied through measurements of the magnetic susceptibility, magnetization, electrical resistivity, thermoelectric power and specific heat. The results are interpreted in terms of a homogeneous intermediate valence state of the Ce ions. This is inferred from a temperature-independent magnetic susceptibility at low temperature and the absence of magnetic ordering, a large linear term in the specific heat, and aT 2 dependence of the electrical resistivity at low temperature followed by a steep increase with temperature up to 50 K. At this temperature, the thermoelectric power displays a maximum. The intrinsic properties are partially obscured at low temperatures by a contribution from roughly a few percent of magnetic impurities, presumably Ce3+ ions. They manifest themselves by an increase of the susceptibility towards low temperatures and by a broad Schottky-like contribution to the specific heat resulting from the excitation of magnetic clusters.Dedicated to Prof. Dr. S. Methfessel on the occasion of his 60th birthday  相似文献   

7.
The electronic structure of LaCoO3 at finite temperatures is calculated using the LDA+GTB method taking into account strong electron correlations and possible spin crossover upon an increase in temperature. Gap states revealed in the energy spectrum of LaCoO3 reduce the dielectric gap width upon heating; this allowed us to describe the insulator-metal transition observed in this compound at T = 500–600 K. The temperature dependence of the magnetic susceptibility with a peak at T ≈ 100 K is explained by the Curie contribution from thermally excited energy levels of the Co3+ ion. At high temperatures, the Pauli contribution from a band electron is added and the total magnetization of LaCoO3 is considered as the sum M tot = M loc + M band. The second term describes the band contribution appearing as a result of the insulator-metal transition and facilitating the emergence of a high-temperature anomaly in the magnetic susceptibility of LaCoO3.  相似文献   

8.
The magnetic properties of new bifunctional molecular magnets based on nitrosyl complexes of ruthenium and thiacalix[4]arenes of rare-earth ions (Gd3+, Dy3+) have been investigated. A photoinduced decrease in the magnetization of the molecular magnet with rare-earth ions Gd3+ and the absence of a photomagnetic effect in crystals with rare-earth ions Dy3+ have been revealed at a temperature of 2 K. It has been found that, in the sample containing Dy3+ ions, the magnetization deviates by 6% from the calculated value for noninteracting ions. A comparison of the results obtained for two groups of isostructural samples, which differ only in the type of rare-earth ions, has demonstrated that the observed deviation of the magnetization is caused by the interaction of the orbital moment of the Dy3+ ions with the crystal field.  相似文献   

9.
The magnetic properties of Fe-based singlecrystal garnets have been studied. A magnetic field up to 55 kOe in the temperature range from 4.5 to 300 K has been used. The compensation temperature (T comp) of the studied garnets has been determined. The compensation temperature increases with the increase of the rare-earth ions (Ho3+ or Gd3+) substituting Y3+ ions in thec sublattice of R3Fe5O12. AboveT comp, the magnetization was found to be linearly field dependent. The results are in good agreement with magnetization measurements performed on polycrystaline samples, and with calculations based on the crystal field parameters of the isostructural Holmium Gallium Garnet (HoGG).  相似文献   

10.
The magnetic properties of the EuMn0.5Co0.5O3 perovskite synthesized under various conditions are studied in fields up to 140 kOe. The sample synthesized at T = 1500°C is shown to exhibit a metamagnetic phase transition, which is irreversible below T = 40 K, and the sample synthesized at T = 1200°C demonstrates the field dependence of magnetization that is typical of a ferromagnet. Both samples have TC = 123 K and approximately the same magnetization in high magnetic fields. The metamagnetism is assumed to be related to a transition from a noncollinear ferromagnetic phase to a collinear phase, and the presence of clusters with ordered Co2+ and Mn4+ ions leads to ferromagnetism. The noncollinear phase is formed due to the competition between positive Co2+–Mn4+ and negative Mn4+–Mn4+ and Co2+–Co2+ interactions, which make almost the same contributions, and to the existence of a high magnetic anisotropy.  相似文献   

11.
The magnetic properties of an EuBaCo1.9O5.36 single crystal are studied in the temperature range T = 2–300 K and the magnetic field range H ≤ 90 kOe. This binary layered cobaltite single crystal has vacancies in the cobalt and oxygen sublattices, in contrast to the stoichiometric EuBaCo2O5.5 composition. All cobalt ions in EuBaCo1.9O5.36 are in a trivalent state. The single crystal has an orthorhombic structure with space group Pmmm, and its unit cell parameters are a = 3.883 Å, b = 7.833 Å, and c = 7.551 Å. The field and temperature dependences of the magnetization of the single crystal demonstrate that it is ferrimagnet below TC = 242 K. At T < 300 K, all three spin states of the Co3+ ions are present. The nearest-neighbor interactions give antiferromagnetic (AFM) and ferromagnetic (FM) contributions to the exchange energy. The ratio of the AFM to the FM contributions changes when temperature decreases because of a change in the spin state of the Co3+ ions. The single crystal exhibits signs of mictomagnetism at low temperatures in high magnetic fields. At T = 2 K and H = 90 kOe, the zero-field and nonzero-field magnetizations are strongly different because of a uniaxial magnetic anisotropy, which tends to set magnetization along the magnetic field applied in cooling throughout the crystal volume. As a result, a complex ferrimagnetic structure with a noncollinear direction of Co3+ spins appears. The following phenomena characteristic of mictomagnets are also observed in the EuBaCo1.9O5.36 single crystal: a shift in a magnetization hysteresis loop when temperature decreases, retained hysteretic phenomena and no magnetization saturation in high magnetic fields, and an orientation transition. The mictomagnetic state in EuBaCo1.9O5.36 is shown to be caused by the structural distortions induced by vacancies in the cobalt and oxygen sublattices and by the frustration of AFM and FM exchange interactions.  相似文献   

12.
Measurements of the Faraday rotation of ErIG, Er3Fe5O12, have been performed in the 4.2–300 K temperature range in magnetic field up to 20 kOe applied along the [111] direction and at 1.15 μm wavelength. The results are analysed under the assumption that the contribution of the Fe3+ ions to the total Faraday rotation is the same as that of YIG, Y3Fe5O12. The temperature and field dependences of the contribution of the Er3+ ions are deduced. Both magnetic and electric dipole contributions of the Er3+ ions are calculated; the electric dipole coefficient Ce is found to present a linear temperature dependence between 30–300 K. The temperature dependence of the Faraday rotation susceptibility differs strongly from that of the magnetic susceptibility.  相似文献   

13.
The specific heat was measured in the range 0.4–300 K in YFe3(BO3)4, Y0.5Gd0.5Fe3(BO3)4, and GdFe3(BO3)4 single crystals. Sharp anomalies were found at temperatures of first-order structural, second-order antiferromagnetic, and first-order spin-reorientational transitions. A Néel temperature of about 37 K was found to be virtually independent of presence of rare-earth ions, indicating rather weak coupling of Gd and Fe subsystems. The contribution of the magnetic system to specific heat was separated through the scaling procedure allowing determination of the magnetic entropy of Fe and Gd subsystems. At the lowest temperatures, the specific heat in GdFe3(BO3)4 exhibits a Schottky-type anomaly, which is due to Gd3+ eightfold degenerate ground-level splitting by the internal magnetic field of the Fe subsystem of about 7 T. The text was submitted by the authors in English.  相似文献   

14.
The transformation of the band structure of LaCoO3 in the applied magnetic field has been theoretically studied. If the field is below its critical value BC≈65 T, the dielectric band gap decreases with the field, thus giving rise to negative magnetoresistance that is highest at T≈300÷500 K. The critical field is related to the crossover between the low- and high-spin terms of Co3+ ions. The spin crossover results in an insulator–metal transition induced by an increase in the magnetic field. Similar calculations have been done for GdCoO3 which is characterized by large spin gap∼2000 K.  相似文献   

15.
In the present work, the time differential perturbed angular correlation (PAC) technique was used to study the temperature dependence of electric field gradient (efg) in GdCoO3 perovskite using 111Cd and 181Ta nuclear probes. The radioactive parent nuclei 111In and 181Hf were introduced in the oxide lattice through chemical process during sample preparation and were found to occupy only the Co sites in GdCoO3. The efg's at 111Cd and 181Ta show temperature dependence with two different fractions each that change with temperature. In the case of 111Cd the quadrupole frequency slowly decreases, with corresponding increase of the temperature and shows a peak like structure at around 200 K and a discontinuity at 700 K. These changes have been interpreted as thermally activated spin-state transitions from low-spin ground state configuration to the intermediate-spin state and from intermediate-spin to high-spin state of Co3+Co3+ ion similar to LaCoO3 compound. Indication of a Jahn–Teller distortion, which stabilizes the intermediate-spin state with orbital ordering, is also pointed out.  相似文献   

16.
GdCoO3, which has the GdFeO3 structure, has been studied between 77 and 1200 K by D.T.A., X-ray diffraction, magnetic susceptibility, electric conductivity and thermoelectric power. All properties observed, although different from those of LaCoO3, fit with the corresponding Goodenough localized electron model. With rising temperature cobalt ions pass progressively from a low-spin CoIII(t62geg0) state to a Co3+(t42geg2) high-spin state.  相似文献   

17.
The Mössbauer effect technique has been employed for the study of magnetic properties of spinel series Ni1?xCuxMnyFe2?yO4 with 0.0≤x≤1.0, and y=0.6. The substitution of Mn3+ and Cu2+ ions results in a slight decrease of the hyperfine field at B‐ as well as A‐sites. The area ratio of Fe3+ ions at the A‐ and B‐site at 77 K indicates that Cu2+, Ni2+ and Mn3+ ions occupy the octahedral sites in an evidence for complete inverse spinel in this system. The temperature dependence of the hyperfine parameters has been studied for composition with x=0.5 where Nèel point TN and Debye temperature θD are found to be 650 and 679 K, respectively. The temperature dependence of the sublattice magnetization σ(T) obeys a one‐third‐power law in the range 0.5N<0.99.  相似文献   

18.
The ternary rare earth compound NdRh4B4 has been studied by means of critical field, low temperature heat capacity, and static magnetic susceptibility measurements. Features in the upper critical field and heat capacity data at 1.31 K and 0.89 K suggest the occurrence of long-range magnetic order in the superconducting state. The temperature dependence of the static magnetic susceptibility follows a Curie-Weiss law with an effective magnetic moment μeff = 3.58 ± 0.05 μB and a Curie-Weiss temperature θp = ?6.2 ± 1.0 K between 20 K and room temperature. However,, magnetization vs. applied magnetic field isotherms suggest the development of a ferromagnetic component in the Nd3+ magnetization at low temperatures.  相似文献   

19.
The magnetization of substitutional Tm1 ? x Yb x B12 solid solutions is studied in the composition range 0 < x ≤ 0.81. The measurements are performed at low temperatures (1.9–300 K) in steady (up to 11 T) and pulsed (up to 50 T, pulse duration of 20–100 ms) magnetic fields. An analysis of the experimental data allowed the contributions to the magnetization of the paramagnetic phase of the Tm1 ? x Yb x B12 compounds to be separated. These contributions include a Pauli component, which corresponds to the response of the heavy-fermion manybody states that appears in the energy gap in the vicinity of the Fermi level (density of states (3?4) × 1021 cm?3 meV?1), and a contribution with saturation in high magnetic fields attributed to the localized magnetic moments ((0.8–3.7)μB per unit cell) of the nanoclusters formed by rare-earth ions with an antiferromagnetic interaction.  相似文献   

20.
Neutron diffraction measurements, made on powder samples, show that Ho4Co3 and Er4Co3 intermetallic compounds are ferrimagnetic at 4.2 K. The magnetic moments of the 2 holmium sites are 8.7 and 2.1 μB and those of the erbium sites are equal to 8.7 and 8.1μB. The cobal+ magnetic moment is 0.2μB for both compounds. The easy magnetization direction lies on the hexagonal plane for Ho4Co3 while for Er4Co3 there are 2 anisotropy directions. Exchange interactions between rare-earth ions of both sites are very weak compared with the total crystal field splitting of the ground state multiplet J. The crystal field parameters are calculated and the magnitude and direction of the rare-earth magnetic moments in each site is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号