首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoexcited states of NH4BPh4 (TPhBA) particles embedded in mesoporous frameworks of different pore sizes were studied by combined electron paramagnetic resonance (EPR), optical and photoluminescence techniques. A distribution of triplet states with short and long electron–hole distances was found. While EPR studies on TPhBA bulk sample suggested that the formation of electron–hole pairs upon the excitation was caused by electron capture on electron traps, the samples in mesoporous frameworks exhibit two ways of the pair formation. The first one is attributed to the capture on phenyl rings and another one is to be thought as the capture of electrons on adsorbed oxygen molecules. These results are also consistent with the thermoluminescence spectra and EPR studies of the photoexcited samples during annealing.  相似文献   

2.
This paper reports on the results of complex investigations of photoexcited states of ammonium tetraphenylborate, which are characterized by self-sensitized luminescence. It has been established that the excitation by UV light at 77 K leads to the formation of stable triplet states due to the capture of electrons on electron traps. The EPR and luminescence excitation spectra exhibit the formation of a set of triplet states with different distances between electrons and holes. The performed investigations give grounds to affirm that, in bulk samples, cations in the structure of ammonium tetraphenylborate are electron traps. When the size of the ammonium tetraphenylborate sample is changed to 6 and 3 nm, the capture of excited electrons on sorbed oxygen molecules becomes dominant. In this case, the appearance of the spectrum of O2 anion radicals has been detected by the EPR method. The proposed interpretation of the observed effects has been confirmed by the thermoluminescence data on the recombination of electron-hole pairs, which correlate with a change in the intensity of the EPR spectra during annealing.  相似文献   

3.
马晓华  马骥刚  杨丽媛  贺强  焦颖  马平  郝跃 《中国物理 B》2011,20(6):67304-067304
The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps. A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Vds = 0-state, off-state, on-state (on-state with low voltage, high-power state, high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons. With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.  相似文献   

4.
Measurements were performed on the thermoluminescence build-up of phenanthrene crystals UV excited at liquid N2 temperature. Kinetic investigations show that the passage of electrons from excited molecules to traps takes place by means of a direct process, without the intervention of the conduction band states. Arguments are advanced to point out the possible role of Frenkel excitons in this process.  相似文献   

5.
In the 11.8–13.8 eV energy range differential threshold and energy loss spectra of electrons scattered by N2 molecules have been obtained at an incident energy of 14.3 eV and with a 30 meV experimental resolution. The study of the angular behaviour of the observed peaks permits us to distinguish between singlet-singlet and singlet-triplet transitions. The predicted F3Πu and G3Πu Rydberg states are observed. Also some levels of unknown triplet states are seen at 13.155, 13.395 and 13.635 eV.  相似文献   

6.
The energy spectra and dispersion relations of carriers in the presence of an electric field applied along the growth direction in ZnO/MgxZn1−xO multiple quantum wells (MQW) are calculated using the asymptotic transfer method (ATM) on the basis of the quasistationary state approximation. The energy spectra of the carriers induce some quasi-bound levels under electric fields. The dispersion relations for the energy of the ground state and lower excitation states still have parabolic shapes for both the electrons and the heavy holes in the presence of a moderate electric field. Our results also reveal that the number of energy levels increases with increasing number of ZnO quantum wells and that the energies increase with both increasing Mg composition x and electric field strength.  相似文献   

7.
The temporal collision dominated relaxation of electrons to new stationary states, starting from initial stationary states and due to jump-like changes of the electric field, was studied in the plasmas of the molecular gases N2 and CO. Numerical solving of the time dependent Boltzmann equation for the electrons yields the temporal evolution of their energy distribution function and of resulting macroscopic quantities. The varying relaxation due to different values of the field strength in the final stationary state has been investigated considering the molecules of the plasma only as vibrationally non-excited and, in another case, including the additional impact of collisions with vibrationally excited molecules. The results obtained are discussed and, in particular, the relaxation times found for the transitions to the new stationary states are analysed on the basis of the energy transfer effectiveness by the collision processes. An approximative microphysical basis for the understanding of the main features of the relaxation in such complex molecular gas plasmas could be obtained.  相似文献   

8.
Quantum states of 2D electrons are studied in a periodic potential without inversion center in the presence of a magnetic field. It is shown that the energy spectrum in magnetic subbands is not symmetric about the center of magnetic Brillouin zone E(k)≠E(?k). Singularities (phase branching points) of the electron wave function, which determine the quantization law of Hall conductivity σxy, are studied in the k space. It is found that a sharp change takes place in the number of points in the magnetic Brillouin zone and in the corresponding values of topological invariants determining the Hall conductivity of filled subbands. It is noted that the longitudinal conductivity of a lattice without inversion center placed in a magnetic field is not invariant with respect to a change in sign of the electric field, and a photovoltaic effect must arise in an ac electromagnetic field.  相似文献   

9.
ZnIn2Se4 is of polycrystalline structure in as synthesized condition. It transforms to nanocrystallite structure of ZnIn2Se4 film upon thermal evaporation. Annealing temperatures influenced crystallite size, dislocation density and internal strain. The hot probe test showed that ZnIn2Se4 thin films are n-type semiconductor. The dark electrical resistivity versus reciprocal temperature for planar structure of Au/ZnIn2Se4/Au showed existence of two operating conduction mechanisms depending on temperature. At temperatures >365 K, intrinsic conduction operates with activation energy of 0.837 eV. At temperatures <365 K, extrinsic conduction takes place with activation energy of 0.18 eV. The operating conduction mechanism in extrinsic region is variable range hopping. The parameters such as density of states at Fermi level, hopping distance and average hopping energy have been determined and it was found that they depend on film thickness. The dark current–voltage characteristics of Au/n-ZnIn2Se4/p-Si/Al diode at different temperatures ranging from 293–353 K have been investigated. Results showed rectification behavior. At forward bias potential <0.2 V, thermionic emission of electrons from ZnIn2Se4 film over a potential barrier of 0.28 V takes place. At forward bias potential >0.2 V, single trap space charge limited current is operating. The trap concentration and trap energy level have been determined as 3.12×1019 cm−3 and 0.24 eV, respectively.  相似文献   

10.
Transport properties of electrons in energy band tails of disordered semiconductors are studied experimentally using a material system in which (i) the width and shape of the band-tail are approximately known and (ii) the Fermi energy is controllable. The material is heavily-doped, closely-compensated, crystalline n-GaAs whose compensation ratio can be made arbitrarily close to unity by the use of two techniques that are described in detail. This control of the Fermi level through compensation permits the measurement of the transport properties of electrons at various energies in the band-tail.

Using band tails having a width of ~50 meV, measurements have been made of the temperature dependence of the d.c. conductivity and Hall coefficient, the frequency dependence of the a.c. conductivity and the electric field dependence of the d.c. conductivity (the last two at low temperatures).

The evidence demonstrates the progressively greater localization of states deeper in the tails. No sign is found of a sharp mobility edge. There is a number of close similarities to the properties of amorphous semiconductors but some significant differences. The frequency dependence of the a.c. conductivity at low temperatures is essentially identical with that of amorphous semiconductors in accord with the general interpretation that conductivity at low temperatures takes place by electron hopping among localized states near the Fermi energy. The detailed temperature dependence of the d.c. conductivity at low temperatures is log σ=σ 0 exp [?(T 0/T)1/2], thus disagreeing with a theoretical expectation that the exponent for low temperature hopping conduction should be 1/4. At low temperatures, the electric field dependence of the conductivity shows a variation as σ~exp (bF/T) over a considerable range extending down to field strengths close to 1 V/cm. This closely resembles recent observations on amorphous semiconductors but the range of field strengths here is lower by several orders of magnitude.  相似文献   

11.
Abstract

Recombination luminescence emission spectra, TSL and trap spectra estimated by fractional glow technique (FGT), in nominally pure and Li-, Bi- and Ho-doped CdWO4, crystals are reported. According to the investigations by FGT heterovalent impurities Li, Bi and Ho causes localized electronic states which act as traps for charge carriers. It is shown that TSL results in emission of known blue-green luminescence band by emptying of the Li+-related traps in CdWO4-Li and yellow luminescence band by emptying of the Bi3+-related traps in CdWO4-Bi. It is proposed that blue-green and yellow luminescence occur by recombination correspondingly of free holes and free electrons at different intrinsic tungstate group related luminescence centers.  相似文献   

12.
沿面放电是破坏绝缘系统性能的原因之一.聚酰亚胺常用于高频电力设备的气-固绝缘中,为此利用密度泛函理论,从原子分子层面探讨了在外电场下聚酰亚胺及其受极性基团OH~–影响后的单分子链结构、能级与态密度、静电势、激发态等微观参数对陷阱形成以及沿面放电的影响.结果表明,外电场下,聚酰亚胺分子结构卷曲,偶极矩增加,易于积聚电荷形成空间电荷中心,尤属引入极性基团OH~–后变化较明显;聚酰亚胺分子中,苯环区域形成空穴陷阱,酰亚胺环区域形成电子陷阱,且电子陷阱能级的数量较多,其中空间电荷陷阱深度随外电场的增加逐渐变深;聚酰亚胺分子在引入极性基团OH~–后激发能降低,使得分子内部的电子变得容易被激发;电子与空穴的空间分离度随电场增加而降低,利于空穴与电子的复合而发出光子.  相似文献   

13.
Two interacting electrons in a Gaussian confining potential quantum dot are considered under the influence of a perpendicular homogeneous magnetic field. The energy levels of the low-lying states are calculated as a function of magnetic field. Calculations are made by using the method of few-body physics within the effective-mass approximation. A ground state behavior (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found in the weak confinement case as a two-electron quantum dot with parabolic confining potential.  相似文献   

14.
Starting from former investigations of pure Ar? Hg mixture plasmas in parameter ranges typical of fluorescent lamps we studied the influence of additional admixtures of molecular gases (N2, H2) on the energy transfer from the electrons heated by an electric field to the lowest excited states of Hg atoms which are the energy source for the resonance radiation production. By calculation of the different power loss rates via solving the appropriate Boltzmann equation for three component mixture plasmas it was found that already a threshold level of molecular impurities of about 10?4 Torr leads to a marked energy dissipation by the impurities and thus to a pronounced reduction of the efficiency of the resonance radiation production. This is caused by the great effectivity of vibrational excitation of molecules in electron collisions due to the great cross sections for such collisions and their low thresholds.  相似文献   

15.
We investigated the contribution of electron-phonon interaction to the broadening parameter Γ of the Wannier-Stark ladder levels in oxidized macroporous silicon structures with different concentration of Si-O-Si states (TO and LO phonons). The obtained value of the Wannier-Stark ladder parameter Γ is much less than the djacent level energy evaluated from giant oscillations of resonance electron scattering on the surface states. We determined the influence of broadening on the oscillation amplitude in IR absorption spectra as interaction of the surface multi-phonon polaritons with scattered electrons. This interaction transforms the resonance electron scattering in samples with low concentration of Si-O-Si states into ordinary scattering on ionized impurities for samples with high concentration of Si-O-Si states. The transformation takes place at the scattering lifetime coinciding with the period of electron oscillations in the surface electric field.  相似文献   

16.
Optical orientation of electrons was used to polarize the crystal lattice nuclei in quantum-size heterostructures and to study the effect of the conduction band spin splitting on the spin states of quasi-two-dimensional (2D) electrons drifting in an external electric field. High (~1%) nuclear polarization was registered using polarized luminescence and ODNMR in single GaAs/AlGaAs quantum wells. Measurement was made of the hyperfine interaction fields created by polarized nuclei on electrons and by electrons on nuclei. The spin-lattice relaxation of nuclei on the non-degenerate 2D electron gas was calculated. A comparison of the theoretical and experimental longitudinal relaxation times permitted the conclusion that the localized charge carriers are responsible for nuclear polarization in quantum wells in the temperature range of 2–77 K. A new effect has been studied, i.e. induction of an effective magnetic field acting on 2D electron spins when electrons drift in an external electric field in the quantum well plane. This effective field Beff is due to the spin splitting of the conduction band of 2D electrons. The paper discusses possible registration of an ODNMR signal when the field Beff is modulated by an electric current during optical orientation.  相似文献   

17.
Abstract

Low-energy electron scattering by anthracene and 1, 4-di 2-(5-phenyloxazolyl) -benzene (POPOP) vapors at low pressures is studied. The primary electron beam energy EO was varied between 10 and 60 eV. The scattering angle was θ = 90°. It has been found that in the electron-energy-loss spectra, bands with maxima of 3·7 and 5·41 eV for anthracene, 4.02 and 7 eV for POPOP correspond to the SO → S1 and So → S2 transitions. Low intensity electron-energy loss due to T2 -states excitation has been observed in the region of 2·15 eV for anthracene and 2·54 eV for POPOP. From comparison with optical absorption spectra and analysis of spectra structure changes at different EO the nature of other bands has been determined. From the obtained results it was concluded that the probability of T1 -state excitation is low. It is shown that the main mechanism of populating the T1 -state by electric methods of vapor pumping is the process of intersystem crossing.

The development of free complex molecule spectroscopy under electric excitation is hindered by the lack of systematic reliable information about elementary interactions of electrons and other particles with such molecules. When excited in electric discharge or by an electron beam, the complex molecule may be in both a neutral and an ionized state. The investigation of such nonequilibrium gas system presents great difficulties due to a large number of possible elementary processes responsible for excitation, ionization, recombination, dissociation of complex molecules. To develop a kinetic model of such a system, one must know a number of cross sections or rate constants of elastic and inelastic electron collisions with the complex molecule. Unfortunately, such data are practically unavailable.

The aim of the present paper is to obtain information about probabilities of complex molecule singlet and triplet states excitation in a gas phase as a result of collision with low-energy electrons (less than 50 eV).

Most accurate data on effective cross sections of molecule (atom) collisions with electrons are provided by using an electronic spectrometer in which an electron beam with small energy spread (of the order of tens of in electron-energy-loss spectra, S2-state excitation cross sections have a considerably greater value.  相似文献   

18.
Slow relaxation phenomena as well as quasiperiodic noise have been studied in the non linear regime of conductivity which takes place above a well defined threshold electric field in the semiconducting incommensurate phase of the quasi one-dimensional blue bronze K0.30MoO3. The noise frequencies are found to be proportional to the excess current attributed to the charge density wave (CDW). In some temperature range, the CDW current is found to decrease logarithmically vs time. These results indicate the presence of metastable states related to domains and domain walls.  相似文献   

19.
Tunneling effect on the intersubband optical absorption in a GaAs/Al x Ga1- x As quantum well under simultaneous presence of intense non-resonant laser and static electric fields is theoretically investigated. Based on the shooting method the quasi-stationary energy levels and their corresponding linewidths are obtained. By considering the joint action of the two external fields the linear absorption coefficient is calculated by means of Fermi’s golden rule and taking into account the intersubband relaxation. We found that: (i) the linewidth broadening due to the electron tunneling has an appreciable effect on the absorption spectrum; (ii) a constant relaxation time adopted in the previous studies could not be justified even for moderate electric fields, especially in the laser dressed wells. Our model predicts that the number of absorption peaks can be controlled by the external applied fields. While in the high-electric fields the excited states become unbounded due to a significant tunneling of the electrons, for high laser intensities and low/moderate electric fields the absorption spectrum has a richer structure due to the laser-generated resonant states. The possibility of tuning the resonant absorption energies by using the combined effects of the static electric field and the THz coherent radiation field can be useful in designing new optoelectronic devices.  相似文献   

20.
A steady-state numerical model of dye-sensitized solar cell is based on continuity and transport equations for electrons, iodide and triiodide ions. The cell model consists of an active layer, where photovoltaic effect including diffusion of electrons in mesoporous TiO2 and ions in electrolyte takes place, and a bulk electrolyte layer, where only ions diffuse. Exponential distribution of trap states in TiO2 and Gaussian distributions of energy levels in the electrolyte within active layer are included in modeling of the recombination dynamics, according to Shockley-Read-Hall statistics and Marcus-Gerischer electron transfer theory. Recombinations at the front contact and a voltage drop at the platinum covered back contact are included in the model. Simulation results are compared with the measured current-voltage characteristics at different light intensities. In particular, light intensity dependence of open circuit voltage is studied over 4 decades. Optimization of cell efficiency regarding active layer and electrolyte layer thickness is carried out. Simulation results show that best efficiency is achieved when electrolyte layer thickness is minimized as much as possible and that active layer thickness is traded off with respect to recombination rates and/or diffusion limited current determined with the selection of the electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号