首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of domain walls in thin magnetic films has been studied by the Lorentz method using electron microscopy. The possible existence of the coinciding and opposite directions of rotation of the magnetization vector in Néel domain walls has been proved experimentally. The domain walls separating 90° domains have been found in single-crystal magnetic films. These walls consist of domains with a considerably smaller area than 90° domains.  相似文献   

2.
The antiferromagnetic domain structure of a multiferroic has been investigated in the presence of a ferroelectric domain structure. It has been demonstrated that an inhomogeneous magnetoelectric (flexomagnetoelectric) interaction leads to pinning of antiferromagnetic domain walls at the walls of the ferroelectric domains and to a change in the structure of antiferromagnetic domain walls.  相似文献   

3.
Multiferroics conventionally refer to the materials exhibiting co-existing electric, magnetic, and structure order parameters. Interplay between ferroelectricity, magnetism, and ferroelasticity in a single phase makes multiferroics truly multifunctional providing control over magnetic and electric ordering by applying electric and magnetic fields, respectively. Incorporation of multiferroic-based components into nanoscale applications will enable additional degrees of freedom in manipulating with spin and charge not easily attainable otherwise. Multiferroic bismuth ferrite lead titanate has been chemically synthesized in form of nanocrystalline films. The morphology of the films revealed a single perovskite phase confined within crystalline grains of few tens of nm in size. The films were found to exhibit ferroelectricity and ferromagnetism with characteristic electric polarization and magnetization hysteresis loops, transformations associated with spin reorientation in an external magnetic field and the spin-glassy behavior well above the room temperature. High degree of magnetic frustration and disorder in the spin system spatially confined in the nanograins, distribution of the grains anisotropy axis, inter-grain interactions, and the effects of uncompensated spins on the large effective surface/interface favored by the nanocrystalline morphology were assumed to be responsible for the anomalous magnetic properties and glassy dynamics in the films.  相似文献   

4.
A common scenario of magnetoelectric coupling in multiferroics is the electric polarization induced by spatially modulated spin structures. It is shown in this paper that the same mechanism works in magnetic dielectrics with inhomogeneous magnetization distribution: the domain walls and magnetic vortexes can be the sources of electric polarization. The electric field driven magnetic domain wall motion is observed in iron garnet films. The electric field induced nucleation of vortex state of magnetic nanodots is theoretically predicted and numerically simulated. From the practical point of view the electric field control of micromagnetic structures suggests a low-power approach for spintronics and magnonics.  相似文献   

5.
The specific features of the ferroelectric polarization switching in bismuth ferrite thin films doped with neodymium ions are investigated by the optical second harmonic generation technique. The structure and nonlinear optical properties of the samples prepared are studied in the course of ferroelectric polarization switching in planar geometry over wide ranges of film thicknesses and electric field frequencies.  相似文献   

6.
The transformation of the domain structure of micrometer-thick films with variations in the induced uniaxial anisotropy constant with the easy magnetization axis perpendicular to the film surface has been investigated using numerical micromagnetic simulation in the framework of a two-dimensional model of the magnetization distribution. The case where the tetra-axial crystallographic anisotropy exists in the film with uniaxial magnetic anisotropy has been considered. The transformation of the open domain structure into the structure with a magnetic flux closed inside the sample has been investigated in detail, and new types of 109-degree and 90-degree vortex-like domain walls and periodic domain structures have been obtained.  相似文献   

7.
We have combined neutron scattering and piezoresponse force microscopy to show that the exchange field in CoFeB/BiFeO_{3} heterostructures scales with the inverse of the ferroelectric and antiferromagnetic domain size of the BiFeO3 films, as expected from Malozemoff's model of exchange bias extended to multiferroics. Accordingly, polarized neutron reflectometry reveals the presence of uncompensated spins in the BiFeO3 film at the interface with CoFeB. In view of these results, we discuss possible strategies to switch the magnetization of a ferromagnet by an electric field using BiFeO3.  相似文献   

8.
Domain structure of BiFeO3 (BFO) films grown on different substrates, with a conductive La0.7Sr0.3MnO3 underlayer, has been experimentally studied. Two oppositely orientated polarizations, along the long body diagonal to the perovskite unit cell of BFO, are detected in the BFO films on the (0 0 1)-oriented NdGaO3. Electric pulses applied in the [0 0 1] direction produce a polarization switching, resulting in the domain structure characterized by the 109° domain walls. Contrary to the BFO films on NdGaO3, the BFO films on SrTiO3 (0 0 1) exhibit a much complex domain structure. Both 71° and 109° domain walls are possible with a uniform polarization component pointing to the bottom electrode.  相似文献   

9.
Bismuth ferrite films doped with neodymium on MgO single-crystal substrates with an epitaxial barium strontium titanate thin (1–2 nm) sublayer have been prepared by rf sputtering of ceramic targets at an elevated oxygen partial pressure and at temperatures below the ferroelectric and magnetic transition temperatures. It has been revealed using X-ray diffraction and Raman scattering spectroscopy that, in these bismuth ferrite films, a new phase (not observed in bulk samples) is formed. The symmetry of this phase is monoclinic, the unit cell contains two formula units, and the spontaneous polarization vector deviates from the [111]cub direction and can have different components along the x, y, and z axes.  相似文献   

10.
Bismuth ferrite, BiFeO3, is the only known room-temperature magnetic ferroelectric material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric order parameters are intimately coupled. Initially in a single ferroelectric state, our crystals have a canted antiferromagnetic structure describing a unique cycloid. Under electrical poling, polarization reorientation induces a spin flop. We argue here that the coupling between the two orders may be stronger in the bulk than in thin films where the cycloid is absent.  相似文献   

11.
陈爱天  赵永刚 《物理学报》2018,67(15):157513-157513
电场调控磁性能够有效降低功耗,在未来低功耗多功能器件等方面具有巨大的潜在应用前景.铁磁/铁电多铁异质结构是实现电场调控磁性的有效途径,其中室温、磁电耦合效应大的应变媒介磁电耦合是最为活跃的研究领域之一.本文简要介绍在以Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_3为铁电材料的多铁异质结构中通过应变媒介磁电耦合效应对磁性、磁化翻转及磁性隧道结调控的研究进展.首先讨论了多铁异质结构中电场对磁性的调控;之后介绍了电场调控磁化翻转的研究进展及理论上实现的途径;然后简述了电场对磁性隧道结调控的相关结果;最后在此基础上,对多铁异质结构中电场调控磁性及磁性器件进行了总结和展望.  相似文献   

12.
Epitaxial ferroelectric thin films on single-crystal substrates generally show a preferred domain orientation in one direction over the other in demonstration of a poor polarization retention. This behavior will affect their application in nonvolatile ferroelectric random access memories where bipolar polarization states are used to store the logic 0 and 1 data. Here the retention characteristics of BiFeO_3 thin films with SrRuO_3 bottom electrodes on both GdScO_3(110) and SrTiO_3(100) substrates are studied and compared, and the results of piezoresponse force microscopy provide a long time retention property of the films on two substrates. It is found that bismuth ferrite thin films grown on GdScO_3 substrates show no preferred domain variants in comparison with the preferred downward polarization orientation toward bottom electrodes on SrTiO_3 substrates. The retention test from a positive-up domain to a negative-down domain using a signal generator and an oscilloscope coincidentally shows bistable polarization states on the GdScO_3 substrate over a measuring time of 500 s, unlike the preferred domain orientation on SrTiO_3, where more than 65% of upward domains disappear after 1 s. In addition, different sizes of domains have been written and read by using the scanning tip of piezoresponse force microscopy; where the polarization can stabilize over one month. This study paves one route to improve the polarization retention property through the optimization of the lattice-mismatched stresses between films and substrates.  相似文献   

13.
吕业刚  梁晓琳  谭永宏  郑学军  龚跃球  何林 《物理学报》2011,60(2):27701-027701
采用金属有机物分解法在Pt/Ti/Si(111)基底上制备了退火温度分别为600℃,650℃,700℃的Bi3.15Eu0.85Ti3O12(BET)铁电薄膜,并对其结构及铁电性能进行了测试,再使用扫描探针显微镜对BET薄膜的电畴翻转进行了实时观测.BET薄膜c畴发生180°畴变的最小电压为+6V,而r畴由于其高四方性,即使极化电压增至+12V也不会发生翻转.薄膜的铁电性主要源于c畴的极化,随着退火温度的升高,c畴的区域面积增加,BET薄膜的剩余极化强度随之增大.退火温度为700℃的BET薄膜剩余极化强度达到84μC/cm2. 关键词: 铁电薄膜 电畴翻转 扫描探针显微镜  相似文献   

14.
15.
We discuss specular reflectivity and off-specular scattering of neutrons and X-rays from magnetic films. Both these techniques are capable of providing information about the morphology of the chemical and magnetic roughness and the magnetic domain structure. The use of neutrons with polarization analysis enables the spatial distribution of different vector components of the magnetization to be determined, and the use of resonant magnetic X-ray scattering enables magnetization in a compound system to be determined element-selectively. Thus both these methods provide powerful and complementary new probes for studying magnetism at the nanoscopic level in a variety of systems such as those exhibiting exchange bias, giant magnetoresistance, spin injection, etc. We shall illustrate with an example of both techniques applied to an exchange bias system consisting of a single crystal of antiferromagnetic FeF2 capped with a ferromagnetic Co film, and discuss what has been learned about how exchange bias works in such a system.  相似文献   

16.
A wealth of studies have confirmed that the low‐field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro‐mechanism. Recently, HfO2 thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub‐coercive polarization reversal properties were investigated for 10 nm thick Si‐doped HfO2 thin films. The applicability of the Rayleigh law to ultra‐thin ferroelectric films was first confirmed, indicating the existence of a multi‐domain structure. Since the grain size is about 20–30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
The resistivity of Mg-Mn-Zn ferrite films from 2.4 to 12 μ thick was studied as a function of the temperature during cyclic heating from 20 to 450 °C and subsequent cooling. The resistivity and activation energy were found as functions of the film thickness. A study was made of the effect of annealing in air on the resistivity, activation energy, exchange-interaction parameter, saturation magnetization, and domain structure of the Mg-Mn-Zn ferrite films.  相似文献   

18.
X-ray absorption spectroscopy and photoemission electron microscopy are techniques commonly used to determine the magnetic properties of thin films, crystals, and heterostructures. Recently, these methods have been used in the study of magnetoelectrics and multiferroics. The analysis of such materials has been compromised by the presence of multiple order parameters and the lack of information on how to separate these coupled properties. In this work, we shed light on the manifestation of dichroism from ferroelectric polarization and atomic structure using photoemission electron microscopy and x-ray absorption spectroscopy. Linear dichroism arising from the ferroelectric order in the PbZr0:2Ti0:8O3 thin films was studied as a function of incident x-ray polarization and geometry to unambiguously determine the angular dependence of the ferroelectric contribution to the dichroism. These measurements allow us to examine the contribution of surface charges and ferroelectric polarization as potential mechanisms for linear dichroism. The x-ray linear dichroism from ferroelectric order revealed an angular dependence based on the angle between the ferroelectric polarization direction and the x-ray polarization axis, allowing a formula for linear dichroism in ferroelectric samples to be defined.  相似文献   

19.
The regime of 180° pulsed magnetization reversal of ferrite-garnet films with planar anisotropy in the region of external fields, in which the mechanism of uniform rotation of the magnetization operates, is investigated for the first time. An analysis of numerical solutions of the Landau–Lifshitz equation and our experimental studies show that, as in the case of the 90° pulsed magnetization, the presence of biaxial anisotropy in real ferrite–garnet films also leads to the so-called “effect of delayed acceleration of the transient process.” In addition, it is found that under certain conditions it is possible to achieve two stable final positions of the magnetization vector that correspond to 180° and 90°.  相似文献   

20.
袁国亮  李爽  任申强  刘俊明 《物理学报》2018,67(15):157509-157509
随着人们对多铁性的深入了解,越来越多不同类型的有机多铁材料被合成出来.激发态电荷转移有机体的电荷转移网络是由一个提供电子的分子(给体donor,D~+)和一个接受电子的分子(受体acceptor,A~-)有序排列后构成的.D~+A~-长程有序排列,其激发态(激子)具有较长寿命和±1/2自旋,这是产生室温铁电性和铁磁性的根本原因.激发态容易受外场刺激,因此光照、磁场、电场、应力等能够很好地调控这类材料的铁电极化、磁矩和相应的磁电耦合系数.激发态电荷转移有机体不仅大大丰富了室温多铁材料体系,而且可以为开发新型多功能电子器件提供材料基础和技术储备.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号