首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature and magnetic-field dependences of the heat capacity, thermal conductivity, thermopower, and electrical resistivity of the Sm0.55Sr0.45MnO3.02 ceramic material are studied in the temperature range 77–300 K and in magnetic fields up to 26 kOe. It is revealed that the quantities under investigation exhibit anomalous behavior due to a magnetic phase transition at the Curie temperature TC. An increase in the magnetic field strength H leads to an increase in the Curie temperature TC and a jump in the heat capacity ΔCp at TC. The temperature dependences of the measured quantities are characterized by hystereses that are considerably suppressed in a magnetic field of 26 kOe and depend neither on the thermocycling range nor on the rate of change in the temperature. The thermal conductivity K at temperatures above TC shows unusual behavior for crystalline solids (dK/dT>0) and, upon the transition to a ferromagnetic state, drastically increases as a result of a decrease in the phonon scattering by Jahn-Teller distortions. It is demonstrated that the hystereses of the studied properties of the Sm0.55Sr0.45MnO3.02 manganite are caused by a jumpwise change in the critical temperature due to variations in the lattice parameters upon the magnetic phase transition.  相似文献   

2.
The magnetic and transport properties of La1?x Mn1+x O3 manganites with excess manganese are studied. It is shown that magnetic and charge ordering heavily depends on the superstoichiometric manganese content, magnetic field, and pressure. The magnetoresistive effect (MRE) is enhanced as the manganese concentration increases. In addition to the paramagnet-ferromagnet transition, the temperature dependences of the magnetization exhibit anomalies at low temperatures in samples with x=0.1–0.4. The magnetization decreases at T<45 K in fields H<0.2 kOe and increases as H changes from 0.2 to 10 kOe. An analysis shows that the features observed at low temperatures are most probably related to the transition from the ferromagnetic state to the canted spin structure in clusters of mixed-valence manganese ions. The temperature dependences of the magnetization and resistivity remain unchanged as the pressure increases. It is demonstrated that the Curie and metal-dielectric transition temperatures shift to higher values as the manganese concentration increases under pressure. The temperature of the MRE peak increases under pressure, while the MRE decreases.  相似文献   

3.
The magnetization, the electrical resistivity, the specific heat, the thermal conductivity, and the thermal diffusion of a polycrystalline Heusler alloy Ni45.37Mn40.91In13.72 sample are studied. Anomalies, which are related to the coexistence of martensite and austenite phases and the change in their ratio induced by a magnetic field and temperature, are revealed and interpreted. The behavior of the properties of the alloy near Curie temperature TC also demonstrates signs of a structural transition, which suggests that the detected transition is a first-order magnetostructural phase transition. The nontrivial behavior of specific heat detected near the martensite transformation temperatures is partly related to a change in the electron density of states near the Fermi level. The peculiar peak of phonon thermal conductivity near the martensitic transformation is interpreted as a consequence of the appearance of additional soft phonon modes, which contribute to the specific heat and the thermal conductivity.  相似文献   

4.
It has been found that the magnetic susceptibility of (Sm0.5Gd0.5)0.55Sr0.45MnO3 ceramic samples in zero external magnetic field exhibits a sharp peak near the temperature of 48.5 K with a small temperature hysteresis that does not depend on the frequency of measurements and is characteristic of the phase transition to an antiferromagnetic state with a long-range charge orbital ordering, which is accompanied by an increase in the magnetic susceptibility with a decrease in the temperature. The magnetization isotherms in static and pulsed magnetic fields at temperatures below 60 K demonstrate the occurrence of an irreversible metamagnetic transition to a homogeneous ferromagnetic state with a critical transition field independent of the measurement temperature, which, apparently, is associated with the destruction of the insulating state with a long-range charge ordering. In the temperature range 60 K ?? T ?? 150 K, the ceramic samples undergo a magnetic-field-induced reversible phase transition to the ferromagnetic state, which is similar to the metamagnetic transition in the low-temperature phase and is caused by the destruction of local charge/orbital correlations. With an increase in the temperature, the critical transition fields increase almost linearly and the field hysteresis disappears. Near the critical fields of magnetic phase transitions, small ultra-narrow magnetization steps have been revealed in pulsed fields with a high rate of change in the magnetic field of ??400 kOe/??s.  相似文献   

5.
In the compound MnBi, a first-order transition from the paramagnetic to the ferromagnetic state can be triggered by an applied magnetic field and the Curie temperature increases nearly linearly with an increase in magnetic field by ∼2 K/T. Under a field of 10 T, TC increases by 20 and 22 K during heating and cooling, respectively. Under certain conditions a reversible magnetic field or temperature induced transition between the paramagnetic and ferromagnetic states can occur. A magnetic and crystallographic H-T phase diagram for MnBi is given. Magnetic properties of MnBi compound aligned in a Bi matrix have been investigated. In the low temperature phase MnBi, a spin-reorientation takes place during which the magnetic moments rotate from being parallel to the c-axis towards the basal plane at ∼90 K. A measuring Dc magnetic field applied parallel to the c-axis of MnBi suppresses partly the spin-reorientation transition. Interestingly, the fabricated magnetic field increases the temperature of spin-reorientation transition Ts and the change in magnetization for MnBi. For the sample solidified under 0.5 T, the change in magnetization is ∼70% and Ts is ∼91 K.  相似文献   

6.
The effects of Mn substitutions on the crystal structure, magnetic properties, and magnetocaloric effect (MCE) of antiperovskite Sn1−xCMn3+x (0≤x≤0.40) have been investigated detailedly. Both the Curie temperature (TC) and the magnetizations at 40 kOe decrease with increasing x firstly for x≤0.10, and then increase with increasing x further. The type of magnetic transition changes from first-order to second-order around x=0.10 with increasing x. Chemical composition-dependent MCE is also studied around TC. With increasing x, the maximal magnetic entropy changes decrease and the magnetic phase transitions broaden. Accordingly, the relative cooling power (RCP) increases with increasing x, reaching the largest values of ∼0.56 J/cm3 (∼75 J/kg) and ∼1.66 J/cm3 (∼221 J/kg) with the magnetic changes of 20 kOe and 48 kOe, respectively. Considering the large RCP, inexpensive, and innoxious raw materials, these serial samples Sn1−xCMn3+x are suggested to be potential room-temperature magnetic refrigerant materials.  相似文献   

7.
The accurate determination of the Curie temperature (TC) is particularly important in describing the magnetic behavior close to the paramagnetic-ferromagnetic (PM-FM) phase transition. In this paper, we studied the magnetic phase transition and accurately predicted the Curie point of perovskite manganite La0.825Sr0.175MnO3. We find the compound shows a second-order PM-FM transition and has a large magnetic entropy change (MEC) in vicinity of phase transition region. Based on the scaling law and the correlation between magnetic field and MEC, the precise and magnetic-independent Curie temperature was determined to be 281.7 K, obviously lower than 285.4 K decided from the magnetization versus temperature. The reliability of new Curie temperature can be well confirmed by the modified Arrott plot together with the critical exponents. Our results not only open up a new pathway for precise definition of Curie point but also facilitate the efficient exploitation of spontaneous magnetic bubbles in perovskite manganite.  相似文献   

8.
The effect of magnetic inhomogeneity on magnetic, magnetocaloric, and transport properties of the colossal magnetoresistance manganites with first order ferromagnetic-to-paramagnetic phase transition is studied. The experiments were performed on the single-crystalline samples of La0.6Pr0.1Ca0.3MnO3. The inhomogeneity is described by the Curie temperature distribution function, which is found from the magnetization data. The temperature dependence of the magnetic field induced change in the entropy is shown to be determined by the distribution function and the shift of the transition temperature in a magnetic field. Similarly, magnetoresistance in the transition region is determined by the resistivity at H=0 and the shift of the transition temperature. The maximum entropy change as well as maximum magnetoresistance can be achieved in the magnetic field of order δTC/BM where δTC is the transition width and BM is the rate of change of the Curie temperature with magnetic field.Our approach to analysis of the effects of inhomogeneity is general and therefore can be used for all compounds with the first order magnetic phase transition.  相似文献   

9.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

10.
The anion-substituted solid solutions of the MnSe1 t x Te x system have been synthesized. The crystal structure and magnetic properties of the synthesized solid solutions have been investigated. It has been shown that, in the concentration range 0 ?? x ?? 0.4, the solid solutions have a face-centered cubic structure. It has been revealed that an increase in the concentration of the substituting element in the MnSe1 ? x Te x system leads to an increase in the coefficient of thermal expansion of the sample. The investigation of the magnetic properties has been carried out at temperatures in the range 80 K < T < 1000 K in a magnetic field up to 8.6 kOe. It has been experimentally found that the type of antiferromagnetic order (the second type of ordering) remains unchanged over the entire concentration range up to x = 0.4 and that the paramagnetic Curie temperature and the Néel temperature decrease within the limits of 20%. Theoretical calculations have been performed using the Monte Carlo method, and the model of nanoclusters with an uncompensated antiferromagnetic moment has been proposed.  相似文献   

11.
《Physics letters. A》2002,299(1):102-106
Magnetic properties and crystal lattice aberrance of melt-spun Nd9Fe85−xMnxB6 (x=0,0.5,1) nanocomposite materials were investigated by DTA, XRD, EXAFS and VSM. It was found that a certain amount of manganese added to Nd9Fe85B6 magnets can promote crystal and enhances the hard magnetic properties. The coercivity and remanence ratio increases from 4.3 kOe and 0.70 to 5.0 kOe and 0.72, respectively. The remain magnetization has not distinct reduce under the optimum annealing method. MT shows Mn doping decreases the Curie temperature of the Nd2Fe14B phase and raises that of α-Fe phase. The origin for the enhancement of magnetic properties is not only related to the reduction of grain size which enhances the exchange coupling between grains but also to the precise crystal structure.  相似文献   

12.
The results of an experimental investigation of the temperature dependences of the magnetic susceptibility and resistivity in the shape-memory ferromagnetic alloys Ni2+x Mn1−x Ga (x=0–0.20) are reported. A T−x phase diagram is constructed on the basis of these data. It is shown that partial substitution of Ni for Mn causes the temperatures of the structural (martensitic) T M and magnetic T C (Curie point) phase transitions to converge. In the region where T C =T M the transition temperature increases linearly with magnetic field in the range from 0 to 10 kOe. The kinetics of a magnetic-field-induced martensitic phase transition is investigated, and the velocities of the martensite-austenite interphase boundary during direct and reverse transitions are measured. A theoretical model is proposed and the T−x phase diagram is calculated. It is shown that there exist concentration ranges where the magnetic and martensitic transitions merge into a first-order phase transition. The theoretical results are in qualitative agreement with experiment. Zh. éksp. Teor. Fiz. 115, 1740–1755 (May 1999)  相似文献   

13.
The magnetodielectric effect (the influence of a magnetic field H on the dielectric constant ?) and the magnetoelectric effect (the influence of an electric field E on the magnetoelectric constant ??) of the PbFe1/2Nb1/2O3 ceramics have been investigated at temperatures T in the range from 50 to 200°C, including the Curie point T C ? 98°C. It has been demonstrated that there is a correlation of these effects with the shift of the ferroelectric-paraelectric phase transition temperature in a magnetic field.  相似文献   

14.
The magnetic ordering in uranium monophosphide (UP) has been studied by neutron diffraction from a single crystal in a magnetic field. UP orders at TN ? 122 ± 0.1 K with the type-I antiferromagnetic structure (+-+-), the ordering taking place in a first-order transition. At T0 = 22.5 K the ordered magnetic moment jumps from 1.7 μB to 1.9 μB. With a magnetic field H = 25 kOe applied along the [11&#x0304;10] direction, it is found that UP has the collinear single-K type-I structure above T0 and undergoes a first-order transition to the planar double-K type-I structure, accompanied by a “moment jump” due to the change in the moment direction from <001> to <110>.  相似文献   

15.
This paper reports on a study of magnetic properties of ordered arrays of ?-In x Fe2 ? x O3 (x = 0.24) nanowires possessing a high room-temperature coercive force of 6 kOe. Lowering the temperature below 190 K brings about a sharp decrease of the coercive force and magnetization of nanowires driven by the magnetic phase transition from the ferrimagnetic into antiferromagnetic phase. The transition is accompanied by a decrease of the magnetic anisotropy constant, which accounts for the anomalous frequency dependence of the position of the maximum in the temperature dependence of dynamic magnetic susceptibility. In the low-temperature phase, a spin-flop transition in the magnetic field of 28 kOe has been observed at T = 2 K. Lines related to the high-temperature hard-magnetic and low-temperature phases have been identified in electron spin resonance spectra of the nanowires. A line lying near zero magnetic field and evolving from the nonresonant signal related to the microwave magnetoresistance of the sample has also been detected.  相似文献   

16.
The magnetic phase transformations induced by changes of the composition, external magnetic field strength, and temperature in manganites with a nearly half-filled conduction band in the vicinity of the metal-insulator phase transition have been investigated experimentally. It has been found that the substitution of rare-earth ions (Sm) for Nd ions with a larger ionic radius in R 0.55Sr0.45MnO3 manganites leads to a linear decrease in the Curie temperature T C from 270 to 130 K and a transformation of the second-order ferromagnetic (FM) phase transition into a first-order phase transition. The results of measurements of the alternating-current (ac) magnetic susceptibility in the (Nd1 ? y Sm y )0.55Sr0.45MnO3 system indicate the existence of a Griffiths-like phase in samples with a samarium concentration y > 0.5 in the temperature range T C < T < T* (where T* ~ 220 K). For samples with y > 0.5, the magnetization isotherms at temperatures above T C exhibit specific features in the form of reversible metamagnetic phase transitions associated with strong fluctuations of the short-range ferromagnetic order in the system of Mn spins in the high-temperature Griffiths phase consisting of ferromagnetic clusters. According to the results of measurements of the ac magnetic susceptibility in the (Sm1 ? y Gd y )0.55Sr0.45MnO3 system for a gadolinium concentration y = 0.5, there is an antiferromagnetic (AFM) phase with an unusually low critical temperature of the spin ordering T N ? 48.5 K. An increase in the external static magnetic field at 4.2 K leads to an irreversible induction of the ferromagnetic phase, which is stable in the temperature range 4.2–60 K. In the temperature range 60 K < T < 150 K, there exists a high-temperature Griffiths-like phase consisting of clusters (correlations) with a local charge/orbital ordering. The metastable antiferromagnetic structure is retained in samples with gadolinium concentrations y = 0.6 and 0.7, but it is destroyed with a further increase in the gadolinium concentration upon the transition to the spin-glass state. The magnetization isotherm obtained with variations in the external static magnetic field in the field range ±70 kOe at 4.2 K and the temperature dependence of the ac-magnetic susceptibility χ suggest that, in the Gd0.55Sr0.45MnO3 ceramics, there is a mixed two-phase low-temperature state consisting of the quantum Griffiths phase with a characteristic divergence of χ(T) near T = 0, which was embedded in the spin-glass matrix with the spin “freezing” temperature T G ? 42 K. The low-temperature state with quantum fluctuations exists in the (Sm1 ? y Gd y )0.55Sr0.45MnO3 system for y ≥ 0.5.  相似文献   

17.
The thermopower α and magnetothermopower Δα/α have been studied on single-crystal Sm0.55Sr0.45MnO3 samples consisting of three types of magnetic clusters (ferromagnetic clusters with the Curie temperature T C = 134 K, the A-type antiferromagnetic clusters with the Néel temperature T NAT C, and the CE-type antiferromagnetic clusters with T NCE = 240 K). The temperature dependences of α and Δα/α have extremes in the vicinity of T NCE, namely, a wide maximum in curve α(T) and a sharp minimum in curve{Δα/α}(T). The negative magnetothermopower in the minimum has a giant value of 50% in the magnetic field of 13.2 kOe. The thermopower is shown to be mainly due to the existence of the CE-type antiferromagnetic clusters, in which there is a charge-orbital ordering that displaces the oxygen atoms. The changed crystal lattice inside these clusters changes the value of the thermopower inside them. This thermopower influences the voltage drop across the sample during measuring the thermopower and, thus, the effective value of α of the whole sample. The application of a magnetic field near T NCE accelerating the destruction of the CE-type antiferromagnetic order causes the sharp decrease in the thermopower of the whole sample. This implies that the CE-type antiferromagnetic clusters with the charge-orbital ordering make main contribution to the thermopower of the whole sample.  相似文献   

18.
The magnetic and magnetotransport properties of Pr0.5Sr0.5Mn1 − x Co x O3 (x ≤ 0.5) solid solutions have been investigated using neutron diffraction methods. The magnetization and electrical conductivity have been measured in magnetic fields up to 140 kOe. It has been established that, during cooling in the temperature range from 160 to 110 K, the compounds of compositions with a cobalt content x ≤ 0.07 undergo a structural phase transition from the high-temperature ferromagnetic phase to the antiferromagnetic phase. A further substitution of cobalt for manganese leads to a stabilization of the inhomogeneous dielectric ferromagnetic state, whereas a state of the cluster spin-glass type has been revealed in compositions with x = 0.15 and 0.20. At x ≥ 0.25, a new magnetic phase with a Curie temperature up to 210 K is formed as a result of the magnetic interaction between manganese and cobalt ions. A magnetic phase diagram of the system under investigation has been constructed.  相似文献   

19.
Sol-gel prepared nanocrystalline La0.7Te0.3MnO3 has rhombohedral crystal structure (space group R3¯C) at room temperature and orders ferromagnetically at ∼280 K (TC). A large magnetic entropy change of ∼12.5 J kg−1 K−1 is obtained near TC for a field change of 50 kOe. This magnetocaloric effect could be explained in terms of Landau theory. The temperature dependence of electrical resistivity shows metal-insulator transition at TC and a giant magnetoresistance of ∼52% in 50 kOe. The co-existence of giant magnetoresistance and large magnetocaloric effect near room temperature makes nanocrystalline La0.7Te0.3MnO3 a promising material for magnetic refrigeration and spintronic device applications.  相似文献   

20.
In a magnetic field parallel to the magnetization axis of an antiferromagnetic Fe Br2 single crystal, a caracteristic metamagnetic behaviour is observed. The transition from an antiferromagnetic phase to a paramagnetic phase is studied by help of magnetization measurements in a steady field (H < 60 kOe). The measurement precision has allowed a detailed study of the magnetization isotherms, caracteristic of a first order magnetization phase transition (T < Tc = 4, 7 K) and of a second order phase transition (Tc < T < TN = 14, 2 K).We have observed an original phase diagram. In a certain temperature and field range, the ordered phase is stable on the high temperature side of the transition point. Some theoretical studies in an Ising model, or in the hypothesis of a strong magnetoelastic coupling forecast the existence of such a magnetic phase diagram.At present, we proceed to a theoretical study, in a molecular field approximation, of the magnetic phase diagram of compounds similar to Fe Br2 where we take into account the relative values of parameters J1, J2 and D associated with ferromagnetic and antiferromagnetic interactions and crystalline anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号