首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral current-induced spin polarization in InGaN/GaN superlattices (SLs) without an applied magnetic field is reported. The fact that the sign of the nonequilibrium spin changes as the current reverses and is opposite for the two edges provides a clear signature for the spin Hall effect. In addition, it is discovered that the spin Hall effect can be strongly manipulated by the internal strains. A theoretical work has also been developed to understand the observed strain-induced spin polarization. Our result paves an alternative way for the generation of spin polarized current.  相似文献   

2.
Electrically induced electron spin polarization is imaged in n-type ZnSe epilayers using Kerr rotation spectroscopy. Despite no evidence for an electrically induced internal magnetic field, current-induced in-plane spin polarization is observed with characteristic spin lifetimes that decrease with doping density. The spin Hall effect is also observed, indicated by an electrically induced out-of-plane spin polarization with opposite sign for spins accumulating on opposite edges of the sample. The spin Hall conductivity is estimated as 3+/-1.5 Omega(-1) m(-1)/|e| at 20 K, which is consistent with the extrinsic mechanism. Both the current-induced spin polarization and the spin Hall effect are observed at temperatures from 10 to 295 K.  相似文献   

3.
We measured the polarization memory of excitonic and biexcitonic optical transitions from single quantum dots at either positive, negative or neutral charge states. Positive, negative and no circular or linear polarization memory was observed for various spectral lines, under the same quasi-resonant excitation below the wetting layer bandgap. We developed a model which explains both qualitatively and quantitatively the experimentally measured polarization spectrum for all these optical transitions. We consider quite generally the loss of spin orientation of the photogenerated electron–hole pair during their relaxation towards the many-carrier ground states. Our analysis unambiguously demonstrates that while electrons maintain their initial spin polarization to a large degree, holes completely dephase.  相似文献   

4.
The circularly polarized electroluminescence of quantum-confined InGaAs/GaAs heterostructures with a ferromagnetic Ni(Co)/GaAs Schottky contact has been investigated. It is shown that the high degree of circular polarization (to 42%) is due to the injection of spin-polarized holes from the ferromagnetic metal. The dependence of the spin injection efficiency on the type of the metal/GaAs interface and the quantum well depth has been analyzed. The spin coherence length of holes was found to be ≈80 nm at 1.5 K.  相似文献   

5.
Electric luminescence and its circular polarization in a Co2 MnAl injector-based light emitting diode (LED) has been detected at the transition of e-A0 C , where injected spin-polarized electrons recombine with bound holes at carbon acceptors. A spin polarization degree of 24.6% is obtained at 77 K after spin-polarized electrons traverse a distance of 300 nm before they recombine with holes bound at neutral carbon acceptors in a p + -GaAs layer. The large volume of the p + -GaAs layer can facilitate the detection of weak electric luminescence (EL) from e-A 0C emission without being quenched at higher bias as in quantum wells. Moreover, unlike the interband electric luminescence in the p+ -GaAs layer, where the spin polarization of injected electrons is destroyed by a very effective electron-hole exchange scattering (BAP mechanism), the spin polarization of injected electrons seems to survive during their recombination with holes bound at carbon acceptors.  相似文献   

6.
We demonstrate optical orientation in Ge/SiGe quantum wells and study their spin properties. The ultrafast electron transfer from the center of the Brillouin zone to its edge allows us to achieve high spin polarizations and to resolve the spin dynamics of holes and electrons. The circular polarization degree of the direct gap photoluminescence exceeds the theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and light holes states, respectively. The spin lifetime of holes at the top of the valence band is estimated to be ~0.5 ps and it is governed by transitions between light and heavy hole states. Electrons at the bottom of the conduction band, on the other hand, have a spin lifetime that exceeds 5?ns below 150?K. Theoretical analysis of the spin relaxation indicates that phonon-induced intervalley scattering dictates the spin lifetime of electrons.  相似文献   

7.
Time-domain measurement of current-induced spin wave dynamics   总被引:1,自引:0,他引:1  
The performance of spintronic devices critically depends on three material parameters, namely, the spin polarization in the current (P), the intrinsic Gilbert damping (α), and the coefficient of the nonadiabatic spin transfer torque (β). However, there has been no method to determine these crucial material parameters in a self-contained manner. Here we show that P, α, and β can be simultaneously determined by performing a single series of time-domain measurements of current-induced spin wave dynamics in a ferromagnetic film.  相似文献   

8.
The first successful experiments of microwave-induced optical nuclear polarization in compensated silicon are presented. Bound holes are created at the boron sites using band-gap light of 1.047 μm. Subsequently, the high spin polarization of these bound holes is transferred to the 29Si nuclei using microwave irradiation, resulting in an enhancement of the nuclear magnetic resonance signal. It is shown that a long lifetime of the nuclear spin polarization thus created is obtained, once the excitation light is shut off.  相似文献   

9.
The polarization of conduction electron spins due to an electrical current is observed in strained nonmagnetic semiconductors using static and time-resolved Faraday rotation. The density, lifetime, and orientation rate of the electrically polarized spins are characterized by a combination of optical and electrical methods. In addition, the dynamics of the current-induced spins are investigated by utilizing electrical pulses generated from a photoconductive switch. These results demonstrate the possibility of a spin source for semiconductor spintronic devices without the use of magnetic materials.  相似文献   

10.
We predict theoretically the optical signatures of spin polarization of carriers in self-assembled quantum dots. The emission spectra are mapped out as a function of increasing electron spin polarization for a fixed number of electrons and holes. The spin-polarized spectra are determined using exact diagonalization techniques for up to 12 particles, corresponding to two lowest filled shells. We predict that the spin polarization leads to photon polarization, to redshifts of emission lines due to excess exchange interactions among the spin-polarized electrons, and to a complete breakup of emission lines for spin-polarized electronic shells.  相似文献   

11.
陈聪  梁盼  胡蓉蓉  贾天卿  孙真荣  冯东海 《物理学报》2018,67(9):97201-097201
抽运-自旋定向-探测是最近发展起来的一种新型瞬态测量技术,该技术在胶体纳米结构电荷分离超快动力学探测中具有独特的优势.本文在比较传统的两光束载流子抽运-探测以及自旋抽运-探测的基础上,深入分析了三光束抽运-自旋定向-探测技术的特点、光路配置及其在胶体量子点光致负荷电、正荷电探测中的应用.最后对三光束抽运-自旋定向-探测技术的更多应用前景作出展望.  相似文献   

12.
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.  相似文献   

13.
We report on electron spin resonance, nuclear magnetic resonance and Overhauser shift experiments on two of the most commonly used III–V semiconductors, GaAs and InP. Localized electron centers in these semiconductors have extended wavefunctions and exhibit strong electron–nuclear hyperfine coupling with the nuclei in their vicinity. These interactions not only play a critical role in electron and nuclear spin relaxation mechanisms, but also result in transfer of spin polarization from the electron spin system to the nuclear spin system. This transfer of polarization, known as dynamic nuclear polarization (DNP), may result in an enhancement of the nuclear spin polarization by several orders of magnitude under suitable conditions. We determine the critical range of doping concentration and temperature conducive to DNP effects by studying these semiconductors with varying doping concentration in a wide temperature range. We show that the electron spin system in undoped InP exhibits electric current-induced spin polarization. This is consistent with model predictions in zinc-blende semiconductors with strong spin–orbit effects.  相似文献   

14.
Strong polarization dependence is observed in the optical transmission through nanohole arrays in metals. It is shown that the degree of polarization is determined by the ellipticity and orientation of the holes; the polarization axis lies perpendicular to the broad edge of the ellipse. Furthermore, the depolarization ratio shows a squared dependence on the aspect ratio of the holes, which is discussed in terms of coupling into and out of the surface plasmon modes. The observed results will be useful for tailoring the polarization behavior of metallic nanophotonic elements in many applications, including surface plasmon enhanced optical sensing and ultrafast optical switching.  相似文献   

15.
《Current Applied Physics》2014,14(2):182-186
We have studied the effect of adiabatic spin-transfer torque on mode interference of spin waves. The mode interference generates amplitude-localized spots at special positions which do not move with time. When applying current, the wavevector of spin wave is modified, resulting in current-dependent displacement of amplitude-localized spots. This current-dependent change in the mode interference may allow to probe current-induced spin wave Doppler shift in space-domain. In favorable situations, it can be used to estimate the intrinsic properties of magnetic materials such as spin polarization.  相似文献   

16.
Spin injection into semiconductors has been a field of growing interest during recent years, because of the large possibilities in basic physics and for device applications that a controlled manipulation of the electrons spin would enable. However, it has proven very difficult to realize such a spin injector experimentally. Here we demonstrate electrical spin injection and detection in a GaAs/AlGaAs p-i-n diode using a semimagnetic II–VI semiconductor (Zn1 − xyBexMnySe) as a spin aligner. The degree of circular polarization of the electroluminescence from the diode is related to the spin polarization of the conduction electrons. Thus, it may be used as a detector for injected spin-polarized carriers. Our experimental results indicate a spin polarization of the injected electrons of up to 90% and are reproduced for several samples. The degree of optical polarization depends strongly on the Mn concentration and the thickness of the spin aligner. Electroluminescence from a reference sample without spin aligner as well as photoluminescence after unpolarized excitation in the spin aligner sample show only the intrinsic polarization in an external magnetic field due to the GaAs bandstructure. We can thus exclude side effects from Faraday effect or magnetic circular dichroism in the semimagnetic layer as the origin of the observed circularly polarized electroluminescence.  相似文献   

17.
We have investigated the current-induced magnetization switching in an exchange-biased spin valve structure. By using an unpatterned antiferromagnetic layer to pin the fixed Co layer, we obtained a lower switching current density by a factor of 5 than a simple spin valve structure. For the application, it is important to know how to keep the spin polarization when the thicker layer is pinned by an antiferromagnet. The unpatterned pinned ferromagnetic lead can be a good solution for spin-transfer-torque-activated device. The effect of Cu buffer layer on the top of the thin Co and Ru buffer layer under the thick Co layer on the current-induced magnetization switching in cobalt-based trilayer spin valves was also investigated. The experimental results showed that the Ru buffer layer in combination with Cu buffer layer could induce a decrease in the critical switching current by 30%, and an increase in the absolute resistance change by 35%, which is caused by an improvement of a microstructure of a thicker Co polarizer.  相似文献   

18.
A method for calculating the spin polarization of photoelectrons excited by circularly polarized light in solids is proposed. The matrix elements of the electron-photon interaction Hamiltonian are obtained with the relativistic augmented-plane-wave method by Loucks. The degree of the spin polarization can be calculated using these matrix elements which represent optical transitions taking into account the spin states.  相似文献   

19.
A novel photogalvanic effect induced by a circular polarized light in tellurium has been found. The absorption of light propagating along the C-axis of the crystal creates a fast e.m.f. which is proportional to the degree of the circular polarization and exhibits a sign dependence on the direction of the polarization.  相似文献   

20.
The polarization spectra of spontaneous terahertz radiation in uniaxially deformed germanium have been measured upon the electric breakdown of shallow acceptors. Lines with various degrees of polarization with respect to the compression axis have been observed in the radiation spectrum. These lines are associated with the optical transitions of holes between the excited and ground states of the acceptor, as well as with the transitions of holes from the valence band to the ground state of the impurity. At a pressure of about 3 ± 0.3 kbar in the [111] direction near the impurity breakdown, the linear polarization degree reaches ~80–90% in the main lines of terahertz radiation. As the electric field intensity increases, the depolarization of radiation is observed, which is caused by the heating of nonequilibrium holes by the electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号